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Executive summary 
Initiation of failure in a composite specimen can be related to the non-linear elastic stress field presents in 
constituents. More often one examines the distribution of extreme values for the stress in the elastic inclusion's 
coatings. Inclusion-reinforced materials are the objects of the investigations of the P-110 project. The early analysis 
work on the damage of the composites has used linear elastic mechanics so it has been less successful in applications 
than those to metals. So the new approaches have been created recently in composite micro-mechanics. One of these 
is mathematical model of multi-particle effective field method (MEFM) that has reached a level for which many of 
practical significant problems can be solved. Four scientific groups worked on implementation of its idea in some 
branches of composite material mechanics to investigate a stress distribution caused by external loading and 
interaction of structural in-homogeneities. The project has been done in two years and consists of the four parts in 
accordance to scientific groups involved in. 
 
Composite media is assumed consisting of a homogeneous matrix containing a random set of inclusions of ellipsoidal 
shape. A realistic model of the problem cannot be solved by analytical methods in the general case of inclusion shape 
and its coating structures. The hybrid boundary integral equation and volume integral equation method considered in 
this project enables one to restrict discretisation to the inclusions only and an inhomogeneous structure of inclusions 
presents no problem in the framework of the same numerical scheme, compared to the standard BIE method. 
Additional fundamental difficulties appear in the analysis of micro-macro problems when micro-inclusions and their 
spacing have a length-scale that is a few orders of magnitude smaller than the length-scales of the macroscopic 
problem. An edge effect yields to the redistribution of local stresses in a boundary layer region. In so doing, the 
eventual abandonment of so-called hypothesis of statistically homogeneous field would leads to a non-local coupling 
between statistical averages of stresses and the strains tensors. As a result the non-local effective elastic properties 
take place. So new numerical tool is developed for solution of singular integral equations involving the hybrid BIE 
and VIE method. Consideration of random structure composites is performed using the MEFM. Within this method 
one constructs a hierarchy of statistical moment equations for conditional averages of stresses in the inclusions; the 
interaction of different inclusions is taken into account. The influence of the ellipsoidal shape, coating structure and 
orientation on inclusions on the effective local and non-local properties as well as stress concentrator factors were 
estimated. The advanced version of this method without effective field hypothesis is proposed. A proper 
approximation is provided by solving the multi-particle model problem by means of the multipole expansion 
technique. Based on theoretical analysis, the efficient numerical algorithms and relevant computer codes have been 
developed providing a detailed analysis of stress fields and macroscopic thermoelastic behavior of a wide class of 
modern composites. 
 
An accurate solutions have been obtained of the 2D and 3D elastostatics problem for a piece-homogeneous half-
space containing a finite array of non-overlapping ellipsoidal inclusions of arbitrary size, aspect ratio, location and 
elastic properties. The method combines the multipole expansion solution in terms of partial vector solutions of 
Navier equation for unbounded space with the expansion formulas and integral transforms to obtain a complete 
solution of the composite half-space problem. By exact satisfaction of all the matrix-inclusion interfaces and flat 
boundary conditions, a primary boundary-value problem stated on a complicated heterogeneous domain has been 
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reduced to an ordinary well-posed set of linear algebraic equations. Properly chosen structure of general solution 
provides remarkably simple form of resolving equations and thus an efficient computational algorithm. The advanced 
structure model of composite half-plane involving a number ellipsoidal inclusions, cavities and/or cracks with an 
accurate account for the microstructure statistics and interaction effects can be considered in this way. The statistical 
moments of stress concentration factors in the random structure fibrous composite have been evaluated from the 
numerical experiments on the generalized periodic structure model being a periodicity unit cell with a number of 
inclusions. The relevant numerical code has been developed and a wide series of numerical experiments has been 
performed with 50 to 100 randomly placed inclusions per cell and statistically meaningful results were obtained for 
the statistical moments of stress concentration factors in phases and interfaces of a random structure fibrous 
composite. They include, in particular, the second moment of stress playing a fundamental role in a wide class of 
non-linear elasticity problems, damage initiation, etc. The developed method finds a variety of applications in the 
composite mechanics: so, combined with the MEFM, a micro mechanical model has been built to predict the 
thermoelastic behavior of random structure nanocomposites reinforced by the aligned silicate nanoplate clusters of 
deterministic structure. Numerical (finite element) solution has been obtained of the “solid with a coated high-aspect 
ratio inclusion” anisotropic elastostatics problem in 2D and 3D. The developed solution has been applied to evaluate 
the stress concentrator factors and other relevant local and averaged tensors entering the general theory of the 
MEFM. The special emphasis was made on the problem of the continuum estimation of effective thermoelastic 
properties of nanocomposites. 
 
The powerful numerical tool was developed involving the hybrid BIE and VIE methods, combined with the 
analytical multipole expansion and finite element methods. The hybrid micro-macro formulation allows 
decomposition of a complete multi-scale problem into two associated sub-problems, one receding entirely at the 
micro-level. The latter was evaluated by the macro-scale BIE technique capable of handling complex geometry and 
general boundary conditions. Within this method one constructs a hierarchy of statistical moment equations for 
conditional averages of stresses in the inclusions; the interaction of different inclusions is taken into account. The 
influence of the shape, coating structure and orientation on inclusions on the effective local and non-local properties 
as well as stress concentrator factors were estimated. 
 
Cooperation with foreign collaborators 
 
Scientific materials are being exchanged both as among members of four work groups in Ukraine as with experts and 
consultants from AFRL, so that the research is carried out jointly with foreign collaborators. Contribution was made  
to the 21st International Congress of Theoretical and Applied Mechanics, ICTAM04 taking place in August 15-20, 
2004 in Warsaw, which is definitely relevant within the scope of the P110-Project. The participation in the most 
important international meetings to deal with scientific in the field of solid and fluid mechanics was aimed at 
discussing the achievements made in the framework of the P-110 project in the scientific society. Close collaboration 
with personnel in the Materials and Manufacturing Directorate of the AFRL at Wright-Patterson AFB, OH is 
realized.  AFRL’s scientists  Drs V. Bechel and V. Buryachenko are the persons who ensured a close connection of 
the project with the current practical interests of AFRL as well as an incorporation of the developed approaches and 
software into the MEFM for design of random structure advanced types of composites.  
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submitted 
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Prospects of future development. 
 
The completed P-110 project provides a firm background for developing a unique technique for the numerical 
modeling of the thermoelastic multifunctional nanocomposites with random structures, enhances our understanding 
of the damage processes in these structures. This technique based computer programs will have wide-ranging 
applications in the aerospace industry, material science, and in mechanical, civil, polymer, and electric engineering.  
 
The very important and potentially fruitful application area of the developed method is nanocomposites, and the 
highly promising preliminary results have been obtained in the framework of a given Project. However, in order to 
develop the realistic models of composites reinforced by the nanoelements of noncanonical shape, say, cylindrical 
and waved fibers with smooth ends embedded into the thick coatings, with random location, orientation, and 
arrangement (statistically homogeneous clustered, and functionally graded structure), a considerable additional effort 
must be applied. It includes generalization of the multipole expansion technique on the composites with anisotropic 
constituents, development of more sophisticated finite element models combined with the molecular dynamics 
simulations, etc. Incorporation into the MEFM of the estimations of the local stress and strain concentrator factors 
given by these methods can be considered as a fundamentally new bridging mechanism between nano- and 
micromechanics. 

A hybrid method based on a combination of the FEA, BEM, and multipole expansion method incorporated into the 
MEFM may be proposed for the micro-macro solution of elastostatic 2-D and 3-D problems in bounded and 
unbounded solids containing the interacting multiple inclusions of different scales. The hybrid nano-micro-macro 
formulation allows decomposition of the complete problem into two associated subproblems, one residing entirely at 
the nano-level and the other at the micro- and macro-level. At the micromechanical level the known approach of the 
MEFM would be generalized to the analyses of both the clustered effects for nanosilicate composites (taking into 
account such key factors as: shape of the nanoelements, interlayer distance, and the number of nanoelements in the 
stack of deterministic structure) and the prescribed random orientation of anisotropic nanofibers of noncanonical 
shape (cylindrical and waved fibers with smooth ends embedded into the thick coatings with elastic properties 
continuously varying in both the radial and circumferential direction). A fundamental role of an edge effect yielding 
to the redistribution of local stresses in a boundary layer region compared to the stress estimations in remote points 
being considered is detected. Both deterministic (periodic and nonperiodic) and random (statistically homogeneous 
and inhomogeneous) structures would be considered. The effective local and nonlocal properties as well as stress 
concentrator factors are estimated. The most challenging issue of nanotechnology is how mechanics can contribute to 
our understanding of the bridging mechanism between the coupled scales, which is described by the nonlocal 
constitutive equations. The results of the MD simulation should be incorporated in a hierarchical model of estimation 
of effective properties of nanocomposites by the Multiparticle Effective Field Method, which is a milestone in the 
progress of mathematical materials science. The MEFM is based on the theory of functions of random variables and 
Green's functions, taking into account the interaction of different inclusions, and will be taken directly in the 
framework of the hypothesis of the effective field. A realistic model of problems cannot be solved by analytical 
methods in the general case of inclusion shape, its coating structures, and arrangement such as, e.g., random 
orientation, location, and clustered. Additional fundamental difficulties appear in the analysis of nano-micro-macro 
problems when microinclusions and their spacing have a problem (geometric, loading, and boundary conditions). So 
it is known a fundamental role of an edge effect yielding to the redistribution of local stresses in a boundary layer 
region. In so doing, the eventual abandonment of so-called hypothesis of statistically homogeneous fields leads to a 
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nonlocal coupling between statistical averages of stresses and the strain tensors when the statistical average stress is 
given by an integral of the field quantity weighted by some tensorial function, i.e. the nonlocal effective elastic 
properties hold.   
 The most challenging issue of nanotechnology is how mechanics can contribute to our understanding of the bridging 
mechanism between the coupled scales, which is described by the nonlocal constitutive equations. The results of the 
MD simulation should be incorporated in a hierarchical model of estimation of effective properties of 
nanocomposites The MEFM is based on the theory of functions of random variables and Green's functions, taking 
into account the interaction of different inclusions, and will be taken directly in the framework of the hypothesis of 
the effective field. Additional fundamental features may be investigated by the analysis of nano-micro-macro 
problems when microinclusions and their spacing have a specific mismatches. It is known a fundamental role of an 
edge effect yielding to the redistribution of local stresses in a boundary layer region. In so doing, the eventual 
abandonment of so-called hypothesis of statistically homogeneous fields leads to a nonlocal coupling between 
statistical averages of stresses and the strain tensors when the statistical average stress is given by an integral of the 
field quantity weighted by some tensorial function, i.e. the nonlocal effective elastic properties hold.   
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Project main idea 
 
Composite materials are used in a lot of structural applications due to their well-known advanced properties. 
Prediction of the behavior of these materials is the important step in the process of its implementation in structural 
design. Inclusion-reinforced materials are the subject of the investigations of the P-110 project. Many of works have 
been devoted to determination of the effective linear elastic properties, singularity fields of stress and deformation 
near the tip of cracks etc. It was assumed usually that the inclusions are imbedded in a linear defect free continuum. 
As a result three obstacles have not been investigated till now. Macroscopic interacting cracks and multi-component 
inclusions, then distributed microscopic damage and third the non-linear properties of constituents. The early 
analysis work on the damage of the composites has used linear elastic fracture mechanics so it has been less 
successful in applications than those to metals. The new approaches has been created recently would be a fruitful 
tool in composite micro-mechanics. One of these developed last years is the mathematical model of multi-particle 
effective field method that has reached a level for which many of practical significant problems can be solved. The 
P-110 project is carrying out right on the model mentioned. Four scientific groups are working on implementation of 
its idea in some branches of composite material mechanics to investigate a stress distribution caused by external 
loading and interaction of structural in-homogeneities. Eight points of the work plan were done.  
1. Development of an iteration hybrid volume integral equation (VIE) and boundary integral equation (BIE) 

method for analysis of a finite number of inclusions in a half space.  
2. Development of software for solutions of multi-scale problems with a finite number of inclusions in a half space.  
3. The examination of accuracy and efficiency of the method proposed through comparison with results obtained 

from finite element analysis and some analytical results.  
4. Development of general integral equations governing the stress state of homogeneous half space with a random 

field of residual stress inclusions appropriate for the subsequent numerical solution.  
5. Development of general integral equations governing the stress state of micro-inhomogeneous half space 

appropriate for the subsequent numerical solution.  
6. An approximate estimation of local effective properties.  
7. An approximate estimation of non-local effective properties as well as stress concentrator factors in random 

structure half space.  
8. An approximate estimation of statistical moments of stress concentrator factors in random structure half space.  
 

Technical approach 
 
The fundamental problem being investigated is an elastic equilibrium of a fibrous composite half-space. Provided the 
surface load and far stress field do not vary in fiber direction, the problem can be thought as two-dimensional (2D), 
namely, an elastic half plane with a finite number of circular inclusions. And, likewise the majority of 2D linear 
elasticity problems, the powerful method of complex potentials is applied here to obtain an accurate analytical 
solution. This problem continues for a long years to be relevant and attracts attention of investigators. Although only 
well separated and distant from the flat boundary inclusions were considered, discrepancy in the numerical data 
generated by the different methods compared has been observed. The complete analytical solution has been obtained 
here for a half plane containing a finite or infinite quasi-periodic array of arbitrarily placed non-overlapping circular 
inclusions. The stress and strain state of inhomogeneous half plane is governed by the uniform far stress field and 
arbitrary load applied at the flat boundary. To get an accurate solution of the problem, the Kolosov-Muskhelishvili 
method of complex potentials has been combined with the Fourier-integral transform technique. By exact satisfaction 
of all the boundary conditions, the primary boundary-value problem is reduced to an ordinary well-posed set of linear 
algebraic equations and this provides high computation efficiency and accuracy of the method developed. The results 
of numerical study are presented and possible ways to improve computational efficiency of the method are discussed. 
In the case of short fiber reinforcing, the problem is essentially three-dimensional (3D) and requires more 
sophisticated math to analyze it. The multi-pole expansion method has been combined with a newly developed 
numerical technique to solve for a finite array of spheroid inhomogeneities in an unbounded solid. Likewise the 
above 2D problem, this model is a first step in development the large-scale model of a near-to-surface volume of 
fibrous composite. Composite media is assumed consisting of a homogeneous matrix containing a random set of 
inclusions of ellipsoidal shape (2-D and 3-D cases). A considerable number of methods are known in the linear 
theory of such composites yielding the effective elastic constants and stress field averages in the components. A 
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realistic model of the problem cannot be solved by analytical methods in the general case of inclusion shape and its 
coating structures. The hybrid boundary integral equation and volume integral equation method considered in this 
project enables one to restrict discretization to the inclusions only and an inhomogeneous structure of inclusions 
presents no problem in the framework of the same numerical scheme, compared to the standard BIE method. 
Additional fundamental difficulties appear in the analysis of micro-macro problems when micro-inclusions and their 
spacing have a length-scale that is a few orders of magnitude smaller than the length-scales of the macroscopic 
problem. An edge effect yields to the redistribution of local stress in a boundary layer region. In so doing, the 
eventual abandonment of so-called hypothesis of statistically homogeneous field leads to a non-local coupling 
between statistical averages of stresses and the strains tensors when the statistical average stress is given by an 
integral of the field quantity weighted by some tensor function, i.e. the non-local effective elastic properties take 
place. So new numerical tool is developed for solution of singular integral equations involving the hybrid BIE and 
VIE method with evaluation of the appropriate integrals with a Gauss formulae in a spirit of a subtraction technique 
together with the iteration method. Judicious choice of the initial approximation for interacting inclusions in an 
unbounded medium subjected to inhomogeneous loading is made. The hybrid micro-macro formulation allows 
decomposition of a complete multi-scale problem into two associated sub-problems, one receding entirely at the 
micro-level. The latter is evaluated by the macro-scale BIE technique capable of handling complex geometry and 
general boundary conditions. Consideration of random structure composites with non-linear matrix is performed 
using the Multi-particle Effective Field Method (MEFM) based on the theory of functions of random variables and 
Green's functions and refined approach of conditional-moment method (CMM)  with hypothesis of MEFM. Within 
this method one constructs a hierarchy of statistical moment equations for conditional averages of stresses in the 
inclusions; the interaction of different inclusions is taken into account. The influence of the ellipsoidal shape, coating 
structure and orientation on inclusions on the effective local and non-local properties as well as stress concentrator 
factors will be estimated. For a finite number of interacting inclusions in a half space the iteration hybrid BIE and 
VIE method combined with judicious choice of initial approximation of interacting inclusions with random 
distribution of size, shape, orientation and properties in a half space, the advanced version of Multi-particle Effective 
Field Method without effective field hypothesis is used.  
 
The part one of this project is devoted to working out the methods of prediction the elastic and strength properties of 
the multi-component unidirectional composites with linear and physically non-linear matrix, polymer or metallic. 
Random structure of material is adopted. The feature new is that the matrix is assumed be weakened by microscopic 
damage so the effective properties are the function not only of the volume concentrations of the constituents but of 
the new material parameter reflecting the damage evolution mechanisms. The part two deals with the stress 
concentration in the composite laminates containing macroscopic risers of holes, cutouts and bolted joints type. An 
edge effects and adhesive bonded joints are going to be investigated. The boundary element method, the advanced 
version of multi-particle effective field method model are involved to obtain the solution of the theory elasticity’s 
problems of the first and second type. The part three is connected with the modeling of singularities at the fiber-
matrix interfaces and at the free edge of composite specimen. The four part is devoted to investigation the stress 
concentration near macroscopic stress risers in the composites with initial residual stress in components and 
prediction the life-time and fatigue resistance parameters for materials with micro-structural damage. The general 
integral equations governing the stress state of micro-inhomogeneous half space appropriate for the subsequent 
numerical solution is developed in part five. An approximate estimation of local effective properties and an 
approximate estimation were done of non-local effective properties as well as stress concentrator factors in random 
structure half space is determined. An approximate estimation of statistical moments of stress concentrator factors in 
random structure half space is the problem solved in eight, final part of the project.  
 
Rather powerful numerical tool is developed for solution of singular integral equations involving the hybrid BEM 
and FEM methods. The hybrid micro-macro formulation allows decomposition of a complete multi-scale problem 
into two associated sub-problems, one receding entirely at the micro-level. The latter has been evaluated by the 
macro-scale BEM technique capable of handling complex geometry and general boundary conditions. Consideration 
of random structure composites is performed using the Multi-particle Effective Field Method based on the theory of 
functions of random variables and Green's functions. Within this method one constructs a hierarchy of statistical 
moment equations for conditional averages of stresses in the inclusions; the interaction of different inclusions is 
taken into account. The influence of the ellipsoidal shape, coating structure and orientation on inclusions on the 
effective local and non-local properties as well as stress concentrator factors is estimated. 
 



STCU                   PROJECT P110 - FINAL REPORT                                    FF PAGE 4  

       
8/11/2005  

Composite media is assumed consisting of a homogeneous matrix containing a random set of inclusions of ellipsoidal 
shape (2-D and 3-D cases). A considerable number of methods are known in the linear theory of such composites 
yielding the effective elastic constants and stress field averages in the components  A realistic model of the problem 
cannot be solved by analytical methods in the general case of inclusion shape and its coating structures. The hybrid 
BIE and VIE method considered in this project enables one to restrict discretisation to the inclusions only (in contrast 
to the Finite Element Method), and an inhomogeneous structure of inclusions presents no problem in the framework 
of the same numerical scheme (compared to the standard BIE method). Additional fundamental difficulties appear in 
the analysis of micro-macro problems when micro-inclusions and their spacing have a length-scale that is a few 
orders of magnitude smaller than the length-scales of the macroscopic problem (geometric, loading, and boundary 
conditions). So it is known a fundamental role of an edge effect yielding to the redistribution of local stresses in a 
boundary layer region. In so doing, the eventual abandonment of so-called hypothesis of statistically homogeneous 
fields leads to a non-local coupling between statistical averages of stresses and the strains tensors when the statistical 
average stress is given by an integral of the field quantity weighted by some tensor function, i.e. the non-local 
effective elastic properties take place.   
 
An accurate analytical method has been developed to solve for stress in a layer containing an infinite quasi random 
array of circular inclusions, the last being a "cell model" of near-to-surface domain of fibrous composite. The method 
combines technique of periodic complex potentials with the Fourier series expansion to reduce a primary boundary-
value elasticity problem for a complicated multiple-connected domain to an ordinary well-posed set of linear 
algebraic equations. It provides high numerical efficiency of the method, accuracy of which is controlled entirely by 
a number of harmonics in the truncated series retained for practical calculations. Up to several hundred of interacting 
inclusions can be considered in this way which makes the model sufficiently realistic and flexible to provide 
numerical simulation of random microstructures of composites and their local stress concentrations and effective 
elastic moduli. A highly accurate numerical-analytical variation of boundary element method has been used to solve 
the problem of defining stress of plane with multicoated inclusion of elliptical shape. Due to two-dimensional 
approximation of unknown densities of potential on the boundary of considered discretized body it is possible to 
obtain simultaneously all the components of stress-strain state. Even use of linear approximation gives very good 
correlation with solution of known particular cases of considered problem, namely plane with hole (Kirsh problem), 
plane with elastic inclusion, plane with set of two holes and, at last the set of two interacting inclusions in plane. It 
was ascertained that there are three quite predictable factors influencing the level of stress concentration on the 
contour of coated inclusion, The code provides fast and accurate analysis of stress field in any point of the matrix, 
inclusions and interfaces. Testing has shown rapid convergence of solution excluding the case of nearly touching 
inclusions. In this extreme case, to achieve accuracy prescribed, a number of harmonics is to be increased. For the 
moderate size of the reduced linear system, the standard LU decomposition solver is utilized which gives O(N3) or 
O(N2) rise of computational time with number N of equations increased depending on whether direct or iterative 
procedure is chosen in the above mentioned method. To improve efficiency of code for large N, application of an 
alternate GMRES conjugate gradient iterative solver is reserved. The algorithm developed can be readily 
incorporated in the general scheme of the numerical BIEM method.  
  

Technical progress overview 
 
1. Effective properties, local stresses and edge effects in multi-component materials with n -coated inclusions 
   
The first part of the P-110 project final report is devoted to working out the methods of prediction the elastic and 
strength properties of the multi-component unidirectional or more complex structure composites with linear and non-
linear matrix and n -coated inclusions. 
 
1.1 Nonlinear meso-mechanics of multi-component materials  
To increase the strength and reliability of constructions built up with composite materials is largely a multi-
parametrical problem [5,8,15], one of its solutions being the evaluation of stress concentration in microstructure 
elements and the formulation of required criteria of durability which correspond to classical methods of strength 
theory. The service life of units made up of composite materials is dependent on average or maximum cyclic stresses 
both in matrix, inclusions and coatings. The number of load cycles is very important, amplitude etc. [11,14] 
Moreover, many behavior singularities of non-homogenous material as it was mentioned in P-110 First Annual 
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Report can be given only in terms of nonlinear mechanics [5,8,15,16]. More detailed considerations of the 
mechanical behavior of composite materials require the analysis of the interface between the reinforcement and the 
matrix. These interfaces may represent: weak interfacial layer due to imperfect bonding between the two phases; 
inter-diffusion or chemical interaction zones (with properties varying through the thickness and/or along the surface) 
at the interface between the two phases. It is well known that the overall effective properties of composite materials 
are significantly influuenced by the properties of the interfaces between the constituents. First, the interface controls 
the in situ reinforcement's (particles or ®bers) strength and hence the strength of the composite. Secondly, defects 
and damage are likely to occur at the interface (for example debonding, sliding and interface cracks, etc.) and these 
interfacial defects control the degradation of the composite. Therefore, to evaluate more accurately the effective 
properties of a composite non-linear especially, the behavior and structures of interfaces must be taken into 
consideration [1,6,13].  
 
Therefore, to develop algorithms of designing new multi-constituent composites with given properties requires an in-
depth study of stress in microstructure elements and calculation of effective elastic constants in the scope of 
nonlinear elasticity theory. The results extracted from the references [3-12] involve effective elastic modules of 
nonlinear compressible and incompressible composites of stochastic structure containing two components: matrix 
and non-coated inclusions. The problem addressed in reference [8,15,16] is concerned with defining the 
microstructure stress in nonlinear non-compressible multi-constituent composites. The present result sets forth the 
previous investigations [8,12] and gives a summary for the compressible material problems. The multi particle 
effective field method (MEFM) [1,2] and refined approach of conditional-moment method (CMM) is implemented 
[11], the solution of first iteration for small concentration of inclusions being based on the results obtained earlier in 
[8,15].  
 
First, a representative volume Rv  of the composite body B  taken in the reference configuration Rκ  is considered, 

R m av v v= ∪ , ∪
n

i
ia vv

1=
= . It is assumed that composite specimen subjected to some non random system of loading. 

The stress and strain fields vary from point to point. If every detail of the geometry of a composite were known, 
overall properties can be calculated exactly and local stress concentrators as a result too. In practice, however, exept 
in cases such as those displaing periodicity etc. a complite solution could not even be computed. So random media 
may be used as a model useful for engineer problems solution. A random medium we understand as one of a family, 
any member of which may be characterized by a label α  that belongs to a sample space Α . For an n -phase 
composite material it is convenient to introduce the indicator function ( )rf x , that takes the value 1  if x  lies in 
phase r , rv∈x  and zero otherwise. It depends on α  that denote individual members of a sample space Α , defined 
by ( )p α . the probability density of α  in Α . The mean value or ensemble average of ( )rf x  defines the probability 

( )rP x  of finding phase r  at ∈x B . Thus 
 

( ) ( ) ( , ) ( )r r r
A

P f f p dα α α= = ∫x x x . 

 
Likewise the probability ( , )rsP x y  of finding simultaneously phase r  at x  and phase s  at y  is  
 

( , ) ( ) ( ) ( , ) ( , ) ( )
A

rs r s r sP f f f f p dα α α α= = ∫x y x y x y  

 
We assume that functions ( , )rf αx  are known [16] and there is in each of volumes ,rv [ ],1,1 +∈ nr  an elastic 
material with the properties governed by the third order potential of type [17] 
 

( ) ( )42 3

1 2 1 1 3 1 2 3 3

1ˆ 1 2
2

µ α β β β Ο= + − + + + +⎡⎛ ⎞ ⎤
⎜ ⎟⎢ ⎥⎣⎝ ⎠ ⎦

F EW I I I I I I ,      (1.1) 
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where iI -are the  main invariants of Lagrange finite strain tensor E , 321 ,,,, βββµλ - constants of non linear 
material, tr – is an operator of tensor convolution, F – is a deformation gradient. H - is a gradient of displacement 
vector ( )xu  in the coordinates x  of reference system, Ax -coordinates of an actual configuration Aκ , 1 - a unit 
symmetric tensor of the second rank [15,18]. After being averaged over non-deformed representative volume Rv  of 
the composite body B , the first asymmetric stress tensor of Piola-Kirchhoff ( )xσ  and the deformation gradient 

( )F x  can be used as conjugate variables [3,8] of the nonlinear deformation theory. It follows, the state equations of 
the hyper-elastic medium can be written as  
 

( )kaσ kaW / F ,= ∂ ∂F            (1.2) 
 
Then, for the first and second approximation by displacement values  
 

( ) ( )1 1ijklij kl( ) e ;σ λ=e   

( ) ( )2 112 1ijkl kl( ) mjkl kl ijklmn kl mn ( )( )ij im( , ) E H e ( e e ) .σ λ λ ν= + +e F       (1.3) 

 
 Here  
 

);(
2
1

jiijij HHe +=   , ;ij ij ij j i i jH F u uδ= − = ∇ =   

( );2)2()2( ijijij feE +=   ( ) ;)(
2
1

)1(2 mjmiij HHf =    

);2δαδ(µλ ijklklijijkl I+=  

;4)(
2
1

321 ijklmnijklmnijmnklklmnijmnklijijklmn IIII νδδδνδδδνν ++++=  

);(
2
1

ik jkiljlijklI δδδδ ++   ),(
2
1

ipmnjpkljpmnipklijklmn IIIII +=  

( );5362 3211 βββµν −−=  
( );322 ββµν +−=   ;4/33 µβν = ,/ µλα =       (1.4) 

 
the subscript in parenthesis stays for the order of approximation of nonlinear displacement, −ijδ  is the Kronecker 
delta, µλ, -are Lame elastic modules in the linear strain theory (the constants of second order), 321 ,, ννν  are the 
Lame constants of the third order [17]. When matrix response is nonlinear but rather in elasto-visco-plastic sense 
than simply elastic it’s more convenient to use the deformation potential in form [5]  
 

1
2 2 2

1 1 2 1 2
1( ) [(1 ) 2 ( 3 ) ]
2

n
nW I I I I
+

= + − + −F µ α β . 

 
Here  µ , 1α , β , n - material constants. So stress strain relation will be 

1
2 2

3 1 2( 3 )
n
n

ij ijab ab ijab abe I I K eσ λ ν
−

= + − ; 

ijab ijab ijabK I J= − ; 1
3ijab ij abJ δ δ= .        (1.5) 

 
Included in this family (1.4), (1.5) of materials is a linear elastic solid with 1n =  and a rigid-perfectly plastic solid 
with n →∞ . These conctitutive relations are being particularly appropriated for the investigation of a wide range of 
material behaviors [7].  
    
1.2. Two-phase linear elastic material   
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The stochastic equilibrium equations and the boundary conditions of the first linear approximation can be written in 
the form [2,8,15] 
 

( ) ( )0
(1) (1) ;=A u x b x     ;∈x B  
( ) ,0)1( =xu      ;∈∂x B   

( ) ( ) ( )(1) (1) ;e= −b x f x x  ( ) ( ) 0 ;λ λ= −f x x   

( ) ( ) ( ) ( ) ( ),111 uxuxu −= R           (2.1) 
 

B∂ -is a boundary of compressible composite body B , the dash above indicates the results of statistical averaging in 
the sample with random elasticity ( )λ x , ( )−xuR  is a random displacement vector. Fourier transform ( )kA  of ( )∇A  
operator is defined in [2,8,17] 
 

( )0 0 ;ijmn j mim
k kλ⎡ ⎤ =⎣ ⎦A k  0 =λ 0 0( 2 ),µ α ⊗ +1 1 I        (2.2) 

 
0λ -is a tensor of elastic moduli of the homogenous comparison body, that is the parameters 00 ,αµ are the constants 

within the volume B∈Rv , I  is a unit symmetric tensor of the fourth rank, ( )xτ  is a stress polarization tensor [17]. 
The Green’s function G  of the equation (2.1) can be defined from the following conditions 
 

( )0 ( ) ( ) ;δ∇ + =A G x I x 0           (2.3) 
 
( )xδ - 3D space Dirac function here, so that 

 

( ) ( ) 10 .im im
G

−
⎡ ⎤= ⎣ ⎦k A k  

 
Using the technique described in the previous works [1- 4,8,15], the solution can be written as the integral of the 
convolution type over B  location 
 

( ) ( ) ( ) ( )(1) 1 1 2 21, ,Γ τ= ∗e x x x x          (2.4) 
 
( )21, xxΓ – is an operator with the kernel expressed through derivatives of the Green’s function ( )21, xxG . Now, 

take two-constituent isotropic material with the matrix being reinforced by randomly oriented in space inclusions of 
ellipsoid form. The result of ( , )Γ x y  convolution with any two rank tensor function ( )b y  may be obtained by 
integrals [8] 
 

ijab a( i , j )b a( i , j ) b* G ( y ) ( )d G ( ) y dΓ
∂

= − + −∫ ∫
B B

b x b y y x y n y ,     

 
With boundary condition 

0( ) ,=b y b  ∀ ∈∂y B  , 
 
it transformed to more simpler relation [2,15] 
 

0
ijab a( i , j )b* G ( )[ ( y ) ]d .Γ = − −∫

B

b x y b b y  

 
The non-linear elastic properties of inclusions are defined by the ( )eiW  potential, and that of the matrix are defined 
by the ( )emW  potential, i.e. 1=i , 2=m . Averaging of the equation (2.4) requires the argument coordinate of the 
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left-hand part to be placed in the av  volume containing inclusions oriented in the −an direction, [ ]a 1, n∈ , which 
results in 
 

( ) ( ) ( )1 1 2 2 1 2 1
b 1

, [ , ( , )
n

a i ba
b apΓ

=

= ∗ +∑e x x x f e x x x x ( )2 1 2 1, ( , )].m ma
m apf e x x x x     (2.5) 

 
Here we take the following notations for the statistical moment function bam  [8] 
 

( ) ( ) { } ;,:, a2b1121 vvba ∈∈= xxxmxxm   

),(),( a2b121 vvpp ab ∈∈= xxxx          (2.6) 

 
i.e. the operation of statistical averaging is denoted by angular brackets which embrace the condition of what set a 
point belongs to. The probability densities of distribution when transiting from the state of a1 v∈x , that is from an 
inclusion of −an direction, into the state of b2 v∈x , that is into inclusion of −bn direction, and into the state of 

mv∈2x , where mv  is the volume containing the matrix, are written as follows [8,11] 
 

( ) ( ) );δ1(,δ,),( ba21
*

bba2121 −+= xxxxxx pcpp ab  ( ) );,(φ, 21
*
aa21 xxxx ccp +=    

( );,φ),( 21
*

21 xxxx mam cp =    ( ) ( );,1, 2121
* xxxx pp −=    

( ) ( )*
1 2 1 2, 1 , ;= −ϕ ϕx x x x    ,1*

aa cc −=      (2.7) 
 
( )1 2,ϕ x x -is two-point correlation function of the elastic field, ac –is volume concentration of set aX  of inclusions 

oriented in the −an direction, mc - is volume concentration of the matrix. 
Integrating equations (2.5) is derived by the technique proposed in the previous works [2,8,15], the algebraic matrix 
of g  operator obtained from the integral Γ  being composed of   
 

;2/)( 311 rjgkg +=  ;31rglg −=   

;g
T
g ll =    );(2 311 rjgng +=   

;20 g
T
g kjgm +=   ;2)1( 10 gg ljgm ++=   

1
0 0(2 ) ;g m −= −   1

1 0(2 ) ;g n −= −   1
3 0 0 3.r k jµ−=      (2.8) 

 
Here the common notations are used [17] to define the elements of the algebraic matrix g : 
 

2/)( 1211 ggkg += ;   13glg = ;  

,31glT
g =     33gng = ; 

;2 66gmT
g =    442gmg =        (2.9) 

 
Parameters 321 ,, jjj  are defined by formula 
 

;1 12 jj −=   ( )[ ] ( );2/121 1
2

3 rjwj −+=   

;12 −= wr   ( ),warchj =         (2.10) 
 
w - stays here for the aspect ratio of longitude and transverse sizes of spheroid inclusion. 
Statistical fluctuations of ae  strains of inclusions of aX -set are expressed through the average deformations of the 

matrix me  in the representative volume Rv  of the composite body B  
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,a m

mc=e ae   =a zL ,         (2.11) 
 

mc -is the volume concentration of the matrix, ,i i mλ λ= −L  transversally isotropic tensor z  is given by relation 
 

1 1( )− −= −z g f .           (2.12) 
 
After averaging the equation (2.11) over the set iX  of inclusions of all possible orientations we define the statistical 

average strains of inclusions ie  and that of the matrix me  through macro-strains e  of the representative volume Rv  
 

;eAe ii =   ;eAe mm =   
( )i m= +A A 1 a ;   1( )m

ic −= +A 1 a ; 
ω

=a a ,      (2.13) 
 
angular brackets with subscript ω  denote the operation of statistical averaging over the set of possible inclusion 
orientations. Using the expressions (2.13), the Lame effective linear elastic modules λ  and µ  for two-constituent 
material of random structure take the following form  
 

;3/23
2

1
∑
=

−=
r

Arrrc µκκλ    ∑
=

=
2

1
2

r
Arrrc µµµ ;    

( )1 2 1 4A A z Lµ µ µ µ= + ;   1
2 1

1 (1 4 ) ;
2A z Lcµ µ µ −= +   

( )1 2 1 9 ;`A A z Lκ κ κ κ= +    ( ) 1
2 1

1 1 9 ;
3A z Lc −= +κ κ κ   

;)33(
15
1

z zapmlnk ++−+=µ   ;3/)23( rrr µλκ +=   

.)224(
9
1

za
T

z nllk +++=κ          (2.14) 

 
Here we use the conditions ;1 icc =  and the elements of algebraic matrix z  are calculated by the formula (2.12).  
 
1.3. Multi-constituent compressible linear composites with n -coated inclusions 
In the case of multi-constituent materials we apply the technique of multi-particle effective field [1, 2], refined 
approach of conditional-moment method (CMM) and the Mori-Tanaka scheme [11]. Thus, consider the set of 
operators for the deformation fields of components and the appropriate micro-values. The exact solution is assumed 
to exist 
 

mia eGe =             (3.1) 
 
Then, tensors iA , mA , where i  is the number of inclusions with the elastic potential ( )EiŴ , [ ]ni ,1∈  and m  is the 

subscript of the matrix with an elastic potential ( )ˆ
mW F , ( )1+= nm  are defined through expressions 

 
mii AGA = ;   ∑

=

−+=
n

i

i
im

m cc
1

1)( G1A .      (3.2) 

 
The approximate solution can be derived by replacing in the general case the unknown operator iG  by the 
approximated operator iT  (by operator of deformation concentration) for the average deformations of inclusions 
denoted by i , [ ]ni ,1∈  number and the average strains of the representative volume Rv , that is 
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.eTe ii =             (3.3) 
 
Next, to define tensors mi AA ,  we obtain the formulas 
 

mii ATA = ;   [ ];,1 ni∈     

;
1

1

−

=
⎟
⎠
⎞

⎜
⎝
⎛ += ∑

n

i

i
im

i cc T1A           (3.4) 

 
In the present investigation we define the iG  operator from the solution based on one-point approximation of multi-
particle effective field or conditional statistical functions of moments for two-constituent media [8] i.e. 
 

i i i= = +G T 1 a ;   i i ;
ω

=a a        (3.5) 

 
Here the algebraic matrix ia  is resulted from analyzing the stress-strain state in set iX   of inclusions with i number. 

Thereby, to define tensors iA , mA  the following expressions are derived: 
 

i m i( ) ;= +A A 1 a   [ ];,1 ni∈   

1m
f( c )−= +A 1 a ; .

1
∑
=

=
n

i
if cc         (3.6) 

 
As in the case of incompressible materials [11] we can immediately demonstrate that the presentation of two-
constituent material (3.6) is identical to formula (2.13). In particular, it means that the accuracy of results (3.6) is in 
agreement with the accuracy level of solutions [1,8,15] derived by the technique of multi-particle effective field or 
MEFM [1,2], conditional statistical moment functions for multi-constituent media [13].  
 
1.4. The second order nonlinear solutions. The equilibrium equations of representative volume Rv  for statistical 
fluctuations of second order displacement ( )( )xu 2  in the coordinate reference configuration κ  are written in the form 
 

( ) ( ) ( ) ( )0
2 ;(2)τ∇ = −∇A u x x   Bx∈ ; 

( ) ,0)2( =xu     ;B∈∂x  

( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )( ) ( )( )

(2) (2)

1 1 11

, , ;
1 .
2

, , T

x f x e x t x e H

t x e H H H H e e e

τ

λ λ ν

= +

= + + ⊗
       (4.1) 

 
The differential operator of equation (4.1) agrees in form with corresponding operator from (2.3). This enables us to 
make use of Green’s function of linear problem and derive the integral equation defining the displacement gradient 
of second approximation 
 

( ) ( ) ( )( )22211)2( , xxxxH τΓ ∗= .         (4.2) 
 
Statistical averaging of expression (4.2) is performed when provided that left-hand part argument is placed in the 
volume containing ellipsoid inclusion of iŴ  properties and oriented in an -direction. Then, to define the average over 
this direction of inclusion deformation we obtain the following equation 
 

( ) ( ) ( ) ( ) ( ) ( )
( )

ba ma
(2) 1 1 2 2 1 2 1 2 1 2 1

b 1 1

, τ , , τ , , .
=

⎡ ⎤= ∗ +⎢ ⎥
⎣ ⎦
∑

n
a

b a m ae x x x x x p x x x x p x xΓ     (4.3) 
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According to the calculation scheme proposed we find the solution of this equation after integrating by probability 
density functions of (2.7) type. Herewith, nonlinear members in right-hand part are expressed through macro-
deformations )1(e  of the representative volume of composite that are already known in first approximation. 
 

( ) ( );11)1( ReAH += rr   ];1,1[ +∈ nr    

( ).
2
1)( Tskew HHHR −==          (4.4) 

 
After some elementary analysis we obtain 
 

( ) ( )( )(2) 2 1 ;r r ar= +e A e e e  ];[ mir ∪∈  ];,1[ ni∈  

( ) ;1−+= a1Am   ∑
=

=
n

i

i
ic

1
;aa   

( ) ;mii Aa1A +=   ;a zL=  

∑∑
==

−=⎟
⎠
⎞

⎜
⎝
⎛−=

n

i

ii
i

n

i

ii
i

mam cc
11

;rqrzAe  

( ) ( )( ) ( ) ( )( )1 1 1 1, , ;i i m= −r t e H t e H  

;iii zAq =    ( ) ;iiam
i

ai rzea1e ++=       (4.5) 
 
Here, the condition of arr eA ,  operator normalization is satisfied, i.e. 
 

∑
+

=
=

1

1
;

n

r

r
rc 1A   ∑

+

=
=

1

1
.

n

r

ar
rc 0e         (4.6) 

 
From substituting the solution (4.5) into averaged physical relations of second order taken from (1.8), we benefit the 
application of the T  Cauchy macro-stress tensor and the deformation gradient F  to the multi-constituent 
compressible isotropic composite 
 
( ) ( )1 TJ ;−=T F FS F F      ( );det F=J  

( ) ( ) ( )2 2
1 1 1 2 2 2 1 1 3 2 1I 2 3 I I I I I I ;µ α β β β β⎡ ⎤= + + + + − + − +⎣ ⎦S F 1 E 1 1 1 E 1 E E  

;/1 µλα =     ( );6/)86( 3211 µνννβ ++=  
( ) ;/22 322 µννβ +−=    ;/4 33 µνβ =       (4.7) 

 
The overall Lame constants of second and third order are defined by formula 
 

∑
+

=
−=

1

1
;3/23

n

r
Arrrc µκκλ    ;2

1

1
∑
+

=
=

n

r
Arrrc µµµ      

( )[ ]
( )∑

+

= ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

++

++++
=

1

1
2

32

3
1

1 ;
8236

932
3

n

r
rAAAAA

AAAAAA
r nll

fnl
c

νµκκν

κνµκλκ
ν  

( ) ;23
2
143

2
14

1

1
32

2
2

r

n

r
AAAAAAr llfc∑

+

=
⎥
⎦

⎤
⎢
⎣

⎡
+−⎟

⎠
⎞

⎜
⎝
⎛ ++= µλκνκνµν  

( ) .814
2
31

1

3
3

2
r3

r

n

r
AAAc∑

+

=
⎥⎦
⎤

⎢⎣
⎡ +−= µνµµµν         (4.8) 

 



STCU                   PROJECT P110 - FINAL REPORT                                    FF PAGE 12  

       
8/11/2005  

Here we denote ( ) ,63 rAAAr lf µλκ +=  the coefficients ,Arκ  Arµ , Arl  are defined by formula (3.6), 1 2 3r r r r r, , , ,µ κ ν ν ν  
are the elastic constants of second and third order of r -component, rc  is volumetric concentration of r , 

[ ].1,1 +∈ nr -component. Taking into account the members of second order only, the equation (4.7) takes the form of 
 

( ) ( )32 T 2
1 0 3 1 4 2 5 1 62I f I I I O ;µ α α α α α α⎡ ⎤= + + + + + + + +⎢ ⎥⎣ ⎦

T 1 e 1 e HH e H  

( ) ;/3 1213 µαββα −+=    ( ) ;/324 µββα +=  
( ) ;/22 3215 µββαα −−−=   ( ) ./4 36 µβα +=       (4.9) 

 
Following the technique [12,13], the expressions for tensor coefficients of stress concentration in elements of multi-
constituent material and in the matrix  
 

( ) 0( ) ,i i
c=σ σx K x H   ( ) 0( ) ,m m

c=σ σx K x H ; 

( ) ( );i i i
c = +K H B b H   
i i iλ µ=B A ;   0 0( ) /i i aiσ λ σ=b e ; 

( ) ( )m m m
c = +K H B b H ;       
m m mλ µ=B A ;   0 0( ) /m m amσ λ σ=b e ,      (4.10) 

 
where 1µ λ−=  is overall compliance. 
Stress concentration tensors ( )rB x  may be written in more simple way [8,11] 
 

( )i m= +B B 1 b ,  1( )m −= +B 1 b , 
 
=b qM ,  1 1( )− −= −q p y , 

 
0 0( )λ λ= − +p 1 g , 0( )µ µ= −y x , 

 
0( ) ( )µ µ= −M x x , 0 0 1( )µ λ −= .        (4.11) 

  
Then for single inclusion Iv ∈B  we will get presentation 
 

( ) ( )I = +B x 1 b ,  0( )λ=b q M .        (4.12) 
 
When elasticity tensor of comparison body is defined by 0 mλ λ=  [2,16] the well known Eshelby’s solution for stress 
in a single inclusion is immediately followed  
 

1( )IE −= −B 1 pM , ( )m mλ λ= − +p 1 g        (4.13) 
 
As a result an effective stress field hypothesis of MEFM [1] may be naturally used to determine stresses in any 
inclusion Iv  loaded by equivalent or effective field ( )Iσ x  in non-linear elastic matrix. 
 
1.5 Local stress fields in cores and coatings in non-linear composites 
 
The refined approach of conditional-moment method (CMM) [8,11-15] with hypothesis of multi-particle effective 
field method (MFFM) [1,2] proposed here to investigate local stress fields in inclusions with n  -layered coatings. 
We consider here a non linear elastic composite medium [3,5,8] with stress free strains ( )h x , which consists of a 
homogeneous matrix containing a homogeneous and statistically uniform random set iX  of coated ellipsoidal or 
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spheroidal inclusions having all the same form, orientation and mechanical properties. We are using the refined 
approach of CMM [8,11] with the main hypothesis of many micro-mechanical methods, according to which each 
inclusion is located inside a homogeneous so-called effective or equivalent field. It is shown, in the framework of the 
effective field hypothesis [2], that from a solution of the classical linear elastic problem with zero stress free strains 
for the composite the relations for effective non linear, stored energy and average elastic strains inside the 
components can be found. This way one obtains the generalization of the known formulae by Rosen and Hashin 
[6,15], which are exact for two-component composites. The proposed theory is applied to the example of composites 
reinforced with particles with thin inhomogeneous (along inclusion surface) coatings. For a single coated inclusion 
the micro-mechanical approach is based on the Green function technique as well as on the interfacial Hill operators 
[7,12,13]. 
 
As a generalization of the results [8,12,13] cosider here a certain representative meso-domain B  with a characteristic 
function ( , )Bf αx  containing a set iX  of inclusions Iv  with characteristic functions ( , )If αx  (I = 1, 2,. . .). No 
restrictions are imposed on the elastic symmetry of the phases or on the geometry of the inclusions. The inclusions 

I iv v=∪  are determined as the i - component having identical mechanical and geometrical properties. It is useful to 
define the effective or equivalent field ( )I xσ as a stress field in which the chosen fixed inclusions , ,...,I J Nv v v  are 
embedded. This effective field is a random function of all the other positions of the surrounding inhomogeneities and 
the average of ( )Iσ x  over a random realization α ∈Α  of these inclusions is equal to the right-hand-side of the n-th 
line of the integro-differential system of equation for non-homogeneous domain B  [2,15,16]. More detailed 
considerations of the mechanical behavior of nonlinear composite materials requires the analysis of the interface 
between the reinforcement and the matrix [4,7,13]. The inhomogeneity of mismatch properties in the coating is a 
typical situation due to both the production of the coated inclusions and thermo-plastic deformation of the matrix 
near the inclusion. The micro-mechanical approach is based on the Green function technique [1,15,18] as well as on 
the interfacial Hill operators. The thin-layer hypothesis and the assumption [1] of a homogeneous stress state in the 
core are used. The exactness of the accepted assumptions is checked for particular examples by comparisons with 
finite element analysis results represented in next parts of the report. At first we consider the problem of a single 
coated inclusion inside an infinite non-linear elastic matrix . 
 
Stresses and strains are related to each other via the constitutive equation [5,8,18] 
 

( ) ( ) /Wσ = ∂ ∂x x F           (5.1) 
 
or 
 

( )( ) ( ) ( , )σ λ= +x x e x t x F  
( ) ( ) ( ) ( , )= +e x x x h x Fµ σ          (5.2) 

 
where ( )λ x  and 1( ) ( )µ λ−=x x  are the given phase linear elasticity and compliance fourth-order tensors, 
respectively, and the common notation for tensor products has been employed [8,17]. Non-linear part of constitutive 
relations represented by ( , )t x F  and ( ) ( ) ( , )λ= −h x x t x F , second order tensors of local eigenstresses and 
eigenstrains (transformation fields) which may arise by thermal expansion, plastic deformation, phase transformation, 
twinning and other changes of shape or volume of the material. We assume that the phases are perfectly bonded, so 
that the displacements and the traction components of the stresses are continuous across the inter-phase boundaries. 
We take here uniform external traction boundary conditions 
 

0( ) ( ) ( )σ=T x x n x ,  ∀ ∈∂x B        (5.3) 
 
where ( )T x  is the traction vector at the external boundary ∂B  of the meso-domain B , ( )n x is its unit outward 
normal vector, and 0σ  is a given constant stress tensor. 
The original conditional-moment method presented in detail in [15] was worthy of critical notice of course as many 
of others too. The concrete numerical results were obtained there by truncation of the infinite system of integral 
equations by taking into account only two-point conditional probabilities, and by neglecting fluctuations of stresses 
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within the limits of the components. These are equivalent to acceptance of assumption oh homogeneous elastic fields 
and consideration of homogeneous inclusions. For analytical estimation of integrals involved one proposes the 
analytical representation of the two-point density conforming with the shape of the inclusion Iv  that of necessity 
leads to the acceptance of  the hypothesis 
 

( , / , ) ( )I I K Kv vϕ ϕ ρ=x x ,  0 1( ) ( )I J Iρ −= −a x x , 
 
where  0 1( )I

−a  identifies a matrix of affine transformation which transfers the ellipsoid 0
IJv  being the included volume 

or “correlation hole” into a unit sphere. In so doing, the shape of  “correlation hole” 0
IJv  does not depend on the 

inclusion Jv . 
We introduce here a comparison body [8,10,18], whose mechanical properties denoted by the upper index 0 . So 0λ , 

0µ  will usually be taken as uniform over B , as a result the corresponding boundary value problem is easier to solve 
than that for the original body with random elasticity ( )λ x . All tensors t  ( , , )λ µ ν=t  of material properties are 
decomposed as  
 

0 0δ ′= + = +t t t t t           (5.4) 
 
The Hill condition [7] for elastic energy representatiob holds for any compatible strain field 0e  from (2.1) and 
equilibrium stress field 0σ  (5.3) not necessarily related to each other by a specific stress-strain relation. Here and in 
the following the upper lower case index i  indicates the components and the lower upper case index I  indicates the 
individual inclusions ( 1, ;i n=  1, 2,3...)I = . 
Let us consider some conditional statistical averages of the general integral equation (2.4) leading to an infinite 
system [8] of integral equations (2.5). The concrete numerical results may be obtained for aligned or disordered 
homogeneous ellipsoidal inclusions under different choices of comparison media either the 0 ( )λ λ= x  or 

10 ( )λ µ −= x estimation. Of course, there was no a priori justification for the specific choice of 0λ , not counting the 
condition that the quadratic form, employed in the proof of the Hashin and Shtrikman variational principle, have a 
constant sign. The only justification up to recent publication of Talbot and Willis [16] for choosing for 0λ  the 
Vought or Reuss estimation  [8,15,18] was the fact that specific experimental data agree with the computing curves. 
Although the final explicit general representation for effective moduli was not presented in the conditional-moment 
method, the equivalence of assumptions admitted leads to the conclusion that the conditional-moment method can be 
considered as a particular case of the one particle approximation of MEFM. In addition, in the conditional-moment 
method the shape of the inclusions is taken into account via prescribed anisotropy of the conditional probability 
density. For equally probable orientation of ellipsoidal inclusions it is possible to obtain an isotropic function and the 
estimation of the effective compliance µ  will be invariant with respect to the shape of the inclusion. This result can 
be avoided easily by taking into account directly the shape of the inclusions via the tensor, as done by Willis [16,18] 
on the basis of a variational principle. We use here refined conditional method approach that for randomly oriented 
ellipsoidal inclusions the estimations of effective moduli represented in [11,15] and [16] as are equivalent. The last 
publication of for a non-linear composite a bound on its effective energy density does not induce a corresponding 
bound on its constitutive relation. Recently Talbot and Willis [16] proposed the refined method for bounding directly 
the constitutive relation by employing a linear comparison material. It seems very perspective in sense of approach 
proposed here that bounds produced [16] are closely related to bounds of Hashin-Strikman type and comparison 
elasticity of Voigt and Reuss type is used. So determination of comparison elasticity from some kind of experiments 
[15] is confirmed now by effective energy of a non-linear composite evaluation.  
The thin–layer hypothesis appeared in [1] is being a principal step in the investigation of coated inclusions, because it 
allows the use of the well–developed Eshelby theory and Hill interface operators for the general case of anisotropy of 
the materials being in contact. It is assumed usually that the stress and strain components inside the inclusion 
coincide with those already determined before the coating was introduced. Afterwards this assumption was replaced 
by the hypothesis of homogeneity of the stress state inside the core of inclusion, and elastic problems were 
considered [1,2]. However, the case of inhomogeneity of elastic and mismatch properties in the coating is a typical 
situation due to the production of the coated inclusions and due to plastic deformations of the matrix near the 
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inclusion. Even in situations in which for a specific reference system connected to the unit normal and tangential 
vectors of the surface of the inclusion homogeneous stress and strain fields may be assumed, the introduction of a 
global coordinate system requires the consideration of inhomogeneous fields in the coating. Buryachenko and 
Rammerstorfer analyzed [1] this problem in the framework of the approximate assumption of a homogeneous stress 
state in the core and the thin–layer hypothesis, which means that the characteristic function of the coating can be 
replaced by a surface ( )ρ y function.  According to Eshelby’s equivalence principle, the perturbed strain field ( )′e x  
induced by inhomogeneities (inclusions with properties different from those of the homogeneous matrix) can be 
related to specified eigenstrain *( )e x  by replacing the inhomogeneities with the matrix material. That is, for the 
domain of r -phase inhomogeneities with the elasticity tensor rλ , we have 
 

0 0 *[ ( )] [ ( ) ( )]r m′ ′+ = + −λ λe e x e e x e x         (5.5) 
 
where mλ  is the stiffness tensor of the matrix and 0e  is the uniform strain field by far field loads for a homogeneous 
matrix material only. rλ  and mλ  could be isotropic or anisotropic if the eigenstrain field *( )e x  is uniform in Iv . So 
the strain at any point within an RVE is decomposed into two parts: (a) the uniform strain 0e  (without 
inhomogeneities), and (b) the perturbed strain ( )′e x  due to distributed eigenstrains *( )e x . It is emphasized that the 
eigenstrain *( )e x  is nonzero in the inclusion domain and zero in the matrix domain, respectively. In particular, the 
perturbed strain field induced by distributed eigenstrains *( )e x  can be expressed as 
 

*( ) ( ) ( )d′ = −∫
B

e x G x y e y y          (5.6) 

 
where B  is the volume of an RVE and , ∈x y B . In addition, G  is the second derivative of the Green’s function in a 
linear elastic homogeneous matrix. For example, for a linear, elastic isotropic matrix, we have 
 

03
0

1 [ 15 3 ( )
8 (1 )ijab ijab ia jb ib ja ja ib jb iaG n n n n n

r
ν δ δ δ δ

π ν
= − + + + + +

−
 

0 0 03 3(1 2 ) (1 2 ) 2(1 2 )ij ab ab ij ij ab ijabn n Iδ ν δ ν δ δ ν+ − − − + −       (5.7) 
 
where = −r x y , = −r x y  and / r=n r . Further, summation convention applied, ijδ  denotes the Kronecker delta 
and 0ν  is Poisson’s ratio of the homogeneous matrix. Eshelby used a fourth rank tensor S, which is traditionally 
called Eshelby’s tensor, to describe the strain and stress fields in the inclusion domain. The Eshelby’s tensor is 
defined as 
 

( ) ( )
I

d= −∫
B

S x G x y y           (5.8)  

in which x  is the local point inside the inclusion domain IB . Total strain ( )e x  at any point m∈x B  in the matrix is 
given by superposition of uniform strain 0e  and the perturbed strain ( )′e x  induced by inclusions (inhomogeneities) 
 

0( ) ( )′= + =e x e e x 0 *( ) ( )d+ −∫
B

e G x y e y y         (5.9) 

 
Therefore, the volume-averaged strain tensor is given by 
 

0 *1( ) ( ) ( )
IB

d d
v

= + − =∫ ∫
B B

e x e G x y e y y x 0 *1 [ ( ) ] ( )
B

d d
v

+ −∫ ∫
B B

e G x y x e y y     (5.10) 
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When considering the strain and stress fields at a local point x  that is outside inclusion, we define a fourth rank 
tensor ( )G x , which is called the exterior-point Eshelby ’s tensor as  
 

( ) ( )
m

d= −∫
B

G x G x y y , / I∈x B B         (5.11) 

 
The essential assumption in the Mori-Tanaka approach states that the each inclusion Iv  behaves as isolated one in 
the infinite matrix 0 mλ λ=  and subjected to some equivalent effective stress field ( ) m

Iσ σ=x  coinciding with the 
average stress in the matrix. This assumption allows uniquely define the effective non-linear elastic properties of 
multi-component composite materials. On the other hand this hypothesis is more restrictive then the hypothesis H1 of 
MEFM [1].  It gives an opportunity to use the known solution [2,8,15] for each inclusion Iv  and to find the average 
stress in the matrix by the use of a representation of the average stresses in the separate phases as the average stress 
in the whole composite. It makes possible to the represent the statistical average of both the stresses in the matrix and 
the strain polarization tensor in the inclusions as well as to the estimation of effective properties.  
Let the every coated inclusion Iv  consist of an ellipsoidal kernel IK Iv v∈  with a characteristic function ( )IKf x  and 
homogeneous elastic parameters Iλ , Iν  of the second and third order and n -layered thin coatings CJv  with a 
characteristic functions  
 

( ) ( ) ( ) ( )CJ I IK CN
N

f f f f= − −∑x x x x , J N≠ ,   [1, ]J CN∈ .    (5.12) 

 
There are an inhomogeneous transformation fields ( )CJ const≠h x , and homogeneous linear compliences 

CJ constµ = . Such n -coated inclusions are located in an infinite homogeneous matrix with materials properties mλ , 
mν . We define the jumps of the materials properties on the inter-phase surfaces 

 
IJ I Jµ µ= −M ,  J J mµ µ= −M .        (5.13)  

 
Using the standard Green function technique, we transform the equations (2.1) into an integral equation. This way we 
obtain an estimation of the stress distribution inside the coated inclusion iσ  and ( )Cσ s  in accordance with (4.10). 
Therefore, the stress concentration tensors ( )B x , ( )BIσ x  in eqn (4.8)-(4.10) are found to be  
 

( )B x ,  ( ) ,BI constσ =x   I∀ ∈x B  
 
and  
 

( )B x ,  ( ) ,K constσ ≠x   K∀ ∈x B       (5.14) 
 
After that the tensors ( )R x  and ( )RIe x  are defined by eqn (4.10) and the non-linear elastic properties of the 
fictitious homogeneous inclusions ( )M x  are evaluated by the relations (5.13). Hence, the non-linear elastic problem 
for the single n -coated inclusion is completely solved and we can come to the estimation of the overall non-linear 
elastic properties λ , ν  from (4.8) and average stresses  (4.9), inside the components by the use of different tensors 

( ),B x  ( )Bσ x . Some particular methods of such tensor approaches are represented in [13-15]. 
Different versions of closure assumptions in terms of conditional stress fields analogous to the hypothesis H2 of the 
MEFM for the effective stress fields are known [2,15]. The first order approximations of these similar approaches 
and the principal difference between them is beyond the scope of direct substitution of the stress field for the 
effective field. Even for statistically homogeneous composites it may be shown that the use of the different known 
and useful assumption can lead to a variation of effective elastic moduli by a factor of two or more. This fact has 
been confirmed by experimental data [2,15]. So any model simplification maght to be very evaluated. Let us consider 
now a simplification of the elastic solution  for different particular cases of coated inclusions. For a homogeneous 
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coating, i.e. ( ) ,c const=M x  C∀ ∈x B  are constant for any x  , we get from (5.1) ( ) ( ) mµ µ= −M x x , is the jump of 
the compliance 1µ λ−=  of any component  with respect to the matrix, By this function the variation of the material 
properties within coated inclusions is taken into account. The integral operator kernel  
 
 

0 0( ) [ ( ) ( ) ]Π λ δ λ− = − − + −x y 1 x y G x y         (5.15) 
( ) ( )− = ∇∇ −G x y G x y  

 
is defined by the two rank Green tensor G  of the Lame equation of a homogeneous medium with an elastic modulus 
tensor 0λ  
 

0{ [ ( ) ( ( )) ] / 2} ( )Tλ δ∇ ∇⊗ + ∇⊗ = −G x G x 1 x        (5.16) 
 

( )δ x  is the 3D Dirac delta function, 1  and 1  are the unit second-order and fourth-order tensors, respectively. 
So we may define strain polarization tensors ( )η x  and 0η  
 

( ) Rη σ η= +x R ,  0 0 Rη σ η= +R   I∀ ∈x B .     (5.17) 
 
Let us consider some conditional statistical averages of the general integral equation (4.1) leading to an infinite 
system of integral equations [2,8,15]. In order to simplify originally the exact system (4.1) we now apply the main 
hypothesis of many micromechanical methods [1,16], the so-called effective field hypothesis [2]. 
H1: Each inclusion in domain IB  with measure Iv  has an ellipsoidal shape and is embedded in the field Iσ  which 
is homogeneous over the I -inclusion. The perturbation introduced by the inclusion Iv  in the point I∉y B  is defined 
by the relation 
 

1( ) ( )[ ( ) ( ) ( )]If dΠ σ− + =∫
B

x x y M x x h x x 1( ) ( ) ( ) ( ) II
Ic σ− +T y x M x x h x     (5.18) 

 
where If  is an average over the volume of the inclusion Iv  and 
 

( ) ( ) ( )I I I
I Ic f dΠ− = −∫

B

T y x x y x x , I∉y B        (5.19) 

 
In analogy to [2,15] and in view of linearity of the problem there exist constant fourth- and second-rank tensors 

( )B x  and ( )Bσ x , respectively, such that 
 

( ) ( ) ( ) ( )I I I BI= +x B x x xσ σ σ , I∈x B , 

1[ ( ) ( ) ( )] ( ) ( ) ( )I I RI
Ic σ σ+ = +M x x h x R x x e x        (5.20) 

 
where the tensors ( )R x  and ( )RIe x  are found by the use of the Eshelby theorem [18] 
 

1( )ic −= − −R p 1 B , 1( ) ( )RI BI
ic σ−=e x p x .       (5.21) 

 
The tensor p  is associated with the Eshelby tensor S  by 
 

0µ= +S 1 p ,   ( ) I constΠ= − =p x y , , I∀ ∈x y B     (5.22)  
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In practice the tensors B  and BIσ  are found [13,15,18] from the elastic problem of a single inclusion Iv  in the 
infinite matrix mB , when  
 

0Ic = ,  0( )I constσ σ= =x .        (5.23) 
 
This problem is connected with the calculation of the inhomogeneous four-  ( )B x  and two-rank ( )BI xσ  tensors by 
either analytical or numerical methods, such that for I∈x B  the following holds: 
 

0( ) ( ) ( )BIσ σ σ= +x B x x . 

( ) II =B B x ,   ( )
IBI BIσ σ= x . 

( ) ( ) I
Ic=R M x B x ,  1( ) ( ) ( )

IRI BI
Ic σ= +e M x x h x      (5.24) 

 
We consider here an analytical method for the calculation of the tensors ( )B x  and ( )BIσ x  for spheroidal inclusions 
with a thin coatings in a sense of  non-linear fields (4.10)  . Other analytical methods for the analysis of coated 
ellipsoidal inclusions are mentioned in [1,6]. In the general case the estimation of the tensors ( )B x , BIσ  is a 
particular problem of the transformation field ( )Te y  analysis method [10,15]. For the particular case of the 
homogeneous ellipsoidal domain IB  with non-coated inclusions I i m constµ µ= − =M , we have 
 

1( )I −= +B 1 pM ,  1
BI I Iσ = B ph , 

I I
Ic=R MB ,  1

1( )RI I
Ic −= +e 1 Mp h        (5.25) 

 
By comparison of relation (5.25) with (4.10) one can see that the average non-linear elastic response (i.e. the tensors 
B , BIσ , R , RIe ) of any n -coated inclusion is the same as that of some fictitious ellipsoidal homogeneous, i.e. non-
coated. Inclusion with non linear elastic parameters which also can be expressed in terms of the tensors R  and RIe . 
No restrictions are imposed on the microtopology of the coated inclusions as well as on the inhomogeneity of the 
stress state in the n -coated inclusions. 
In a case when a single spheroid inclusion of the radiuses ia  with n  homothetic spheroidal coatings of the radiuses 

ica  with i m=p p  and according to (5.12), ic ia aρ = −  is embedded in an infinite matrix the problem may be 
investigated rather strightly. The elastic properties of the coatings coincide with the elastic properties of the isotropic 
matrix, i.e. 
 

,(3 2 ) 3 2m
m m m mλ κ µ κ µ≡ +J K , 

1
3ijab ij abJ = δ δ ,  ( ) / 2ijab ia jb ib ja ijabK Jδ δ δ δ= + − , 

iλ (3 ,2 )i iκ µ ,  cnλ (3 , 2 )cn cnκ µ         (5.26) 
 
 
Tensors  
 

( )m m mν= ⊗t e e ,  ( )i i iν= ⊗t e e ,  0cn =t  
 
have a special form with physical meaning represented by constitutive equations (1.1), (1.2).  
According to R. Hill [7] we define the projective operators n , ν  and E , F  of the second- and fourth-order, 
respectively, as follows: 
 

ij i jn n n= ,  ij ij ijnν δ= − , 
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= −E 1 F ,  [ ( ) ] / 2Tν ν ν ν= ⊗ + ⊗F .       (5.27)  
 
Furthermore, the surface tensors are defined by 
 

( )λ λ± ±=n n ,  1( ) [ ( ) ]λ± ± −=G n n ,  

( ) [ ( ) ]H Hλ λ± ± ± ±= −B n 1 A n , 

( )( )( ) [ ( ) ]H
ijab i ja b ij abA n G n± ±=n n .         (5.28) 

 
Here and below the symbols +  and −  relate to the different boundary sides. By testing we immediately obtain 
orthogonal properties of the operators defined in [7] 
 

=nn n ,  νν ν= ,  0ν =n , 
=FF F , =EE E , 

0ν =E ,  0=Fn ,  0=EF .       (5.29) 
 
Hence the tensors ( )HA n , ( )HB n  in (5.28) can be expressed in terms of the projective operators 
  

1( ) [ ]H λ −=A n E E ,   1( ) [ ]H µ −=B n F F .     (5.30) 
 
Perfect contact between two materials means 
 
σ σ+ −=E E ,   + −=Fe Fe .       (5.31) 

 
So the following relations between the stress tensors near the interface may be involved here [1,12,13,15] 
 

( ) [( ) ( )]Hσ σ µ µ σ− + − + − + + −= + − + −B n h h , 

( ) _[( ) ( )]Hσ σ µ µ σ++ − − + − += + − + −B n h h .       (5.32) 
 
Substitution of (5.32) into the right-hand-side of (2.5) leads to 
 

( ) ( )( ) ( ) ( )H H H Hµ µ− ++ + + −− = −B n B n B n B n .       (5.33) 
 
Let an ellipsoidal inclusion Iv  with the homogeneous compliance µ+  be located in an infinite homogeneous matrix 
with compliance µ−  and loaded by the homogeneous stress 0σ  on remote boundary BΓ . Then, according to 
Eshelby's theorem (with 0=h ), we have 
 

0 ( )Iσ σ µ µ σ+ + − += + −p , 
0 ( )( )I

I Icσ σ µ µ σ− − + − += + − −T x x ,        (5.34) 
 
where the tensor Ip  of the inclusion Iv  is associated with the Eshelby tensor ES   by 
 

E Iµ−= +S 1 p            (5.35)  
 
and the tensor ( )I

I
−−T x x  is defined by the relation (5.19) for the point Iv− ∈x  near the ellipsoidal surface 

i IvΓ = ∂ . Substituting the relations (5.34) and (5.35) into (5.18) we obtain 
 

( ) ( )I H I
I Ic − −− = +T x x B n p .         (5.36) 
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Let us consider a coated inclusion I IK ICv v v= ∪  with a characteristic function I IK ICf f f= + . According to (5.12) the 
tensor ( )HB n  in (5.33) is integrated over the coating ICv  
 

( ) ( ) [ ( ) ( )] ( ) ( )H I
IC IC I IK IKf d c f f d dΠ− = − + − −∫ ∫ ∫y B n y p y y f x x y x y .     (5.37) 

 
Changing the integration sequence and applying Eshelby's theorem, we get from (5.33) 
 

( ) ( ) [ ( )]I I N
NC NC If d c c− = − + −∫ y B n y p p p .        (5.38) 

 
In particular for an isotropic medium with the elastic moduli λ  the inversion of the matrix ( )λ n  may be simplified  
 

( ) ( / 3)ij ij ijnλ µδ κ µ= + +n , 

1 2( )
3 4ij ij ijG nκ µδ

µ κ µ
+

= −
+

 

1 3 2( ) ( )
3 4

H
ijab ijab ij abE n n

m
κ µ
κ µ
−

= −
+

A n ,  2m µ= , 

3 2( ) ( )
3 4

H
ijab ijab ij abm F κ µν ν

κ µ
−

= +
+

B n         (5.39) 

 
The matrix stresses in the immediate vicinity of the inclusions Iv  denoted by ( )I

− nσ , are given by the formula  
 

( ) ( ) ( )[ ( ) ( )]H
I I I Iσ σ σ− + += + +n n B n M x h x ,        (5.40) 

 
where ( )Iσ − n  and ( )Iσ + x  are the limiting stresses outside and inside, respectively, near the inclusion boundary 

I IBΓ = ∂  
 

( ) lim ( )Iσ σ− =n y ; ,→y x   ,mv∈y  

( ) lim ( ),Iσ σ+ =x z  ,→z x   ,Iv∈z   IΓ∈x , 
 
−n is the unit outward normal vector on IΓ . The relation (5.31) is correct for any shape of the inclusion Iv . The 

tensor ( )HB n  depends only on the elastic properties of the matrix material mλ  and on the direction of the normal n . 
The expression for ( )HB n  is presented as follows 
 

3 2( ) ( )
3 4

H
ijab ijab ij abm F κ µν ν

κ µ
−

= +
+

B n         (5.41) 

 
The equations (4.5) and (4.6) allow the estimation of the ensemble average of the matrix stresses in the vicinity of the 
inclusions near a point x . By rearranging the latter equation into an integral one and transforming it by a method 
developed earlier, we obtain 
 

0( ) ( )*σ Π η σ− − =x x y ; 
0 0( )Π λ λ= − +I g ; η γ= +h  

γ σ= y ;  0µ µ= −y ;        (5.42) 
 
The jump of the compliance ( )M x  of the component iv  with respect to the matrix mv  
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( ) ( ) mµ µ= −M x x  

 
By the function ( )M x  the variation of the material properties within coated inclusions is taken into account. The 
integral operator kernel is defined by the Green tensor ( )G x  of the Lame equation of a homogeneous comparison 
medium with elasticity 0λ . Eqn (2.14) means that the average stress 0σ σ=  is precisely and that the average strain 

0=e e  can be measured in terms of the boundary displacements. As a special case, if two of the three semi-axes of 

the ellipsoid are the same, then the ellipsoid will become a spheroid. Let us assume that 1 2a a= , where the spheroid 
aspect ratio w  is defined as 3 1/w a a= . Following [12,13,15], if all fibers are spheroid and the matrix is linear 
elastic, then for the particular case of the homogeneous ellipsoidal domain IB , I Iv mes= B  (uncoated inclusions) 
with  
 

i m constµ µ= − =M   
 
we have 
 

1( )−= −B 1 pM ; 
 
The tensor p  is associated with the tensor S  by 
 
= −S 1 pM ; 0 0( )= − +p 1 gλ λ  

 
In this section a possible application of the above general relations is presented. An analytical method for estimating 
the tensors ( )B x  and ( )B xσ , see (3.13), is carried out for the example of a single spheriodal inclusion with a thin 
coating in an infinite matrix loaded by a constant macroscopic stress 0σ . Let the coated inclusion Iv  consist of an 
ellipsoidal core Iv  with a characteristic function ( )If x  and elastic parameters i const=M  and a thin coating ICv  
with a characteristic function ( )ICf x  and elastic inhomogeneous properties ( )ICM x . In the considered case of a 
single inclusion the origin of the coordinate system is chosen to be the center of the inclusion 0I =x  and the 
coordinate axes coincide with the axes of the inclusions. In addition to (2.4) we define the jump of the material 
properties [ ] + −= −f f f  across the boundary CΓ  between the core and the coating as  
 

cm c mµ µ= −M  
 
For the single coated inclusion equation (2.4) yields after some rearrangement 
 

0
1( ) ( )[ ( ) ( ) ( )]dσ σ Π σ= + − +∫

B

x x y M y y h y y        (5.43) 

 
In analogy to [1,8] we find here an approximative solution of (5.43) under the approximative assumption of a 
homogeneous stress state in the core 
 

( ) I constσ σ= =x ;  I i∈ ⊂x B B  
 
and the thin-layer hypothesis, which means that the characteristic function ( )BCf x  can be replaced by a surface δ -
function with weighting function ρ  at the outer surface I

−Γ  of the boundary IΓ  and the volume integral of the 
continuous function ( )g x , i∈x B  is equal to a surface integral over outer surface I

−Γ   
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( ) ( ) ( ) ( )
IC I

IC If d f d−=∫ ∫
B

y g y y s g s s
Γ

ρ         (5.44) 

 
where the product of the characteristic function ( )If

− s  of the boundary ICΓ  and some continuous function 
( ) lim ( )=g s g y , ( ,→y s  ICv∈y , )IΓ −∈s  is integrated over the surface IΓ − .  In the particular case considered 

hereafter, the weighting function ( )ρ s  for a domain ICB  bounded by two ellipsoidal surfaces with the same centre 
and with identically oriented semi-axes Ja  and C

Ja  respectively, is as follows 
 

12 2 2 23
1 2 3 2
4 4 4 2

11 2 3

( )( ) ( )
C
J J J

J J J

y y y a a y
a a a a a

ρ
−

=

−
= + + ∑y ,  CΓ −∈y       (5.45) 

 
Under these assumptions the integral eqn (5.43) is, after averaging over the domain IB , reduced to 
 

0
1 1( ) ( ) ( )[ ( ) ( ) ( )]

IC

i i i i i i c
ICf dσ σ σ σ ρ

Γ

= + + + − +∫p M h s T x s M s s h s s      (5.46) 

 
Here and in the following the upper index i  for the tensors ip , iB , iT  stands for the calculation of these tensors for 
the core IB  by the use of the formulae (5.46), (5.37) and (5.45), respectively. Obviously, discarding the integral term 
in (5.36) leads to the Eshelby solution. Taking the properties of the interface operator ( )HB n  [7] into account leads 
to 
 

2( ) ( ) ( , )[ ( ) ( )]c i H c cm iσ σ σ σ= = + +s s B n M M s h s , 
( ) ( , )i i H m i

ic µ− = +T x s B n p , 
( , ) ( , ) ( , ) ( , )H m c H c H m H cµ µ µ µ= −B n M B n B n B n ,       (5.47) 

 
where n  is a unit outward normal vector on IΓ  in the point s . Here both interface operators ( , )H mµB n  and 

( , )H cµB n  are defined by formula aplied with the compliances mµ  and cµ , respectively  
 

c c mµ µ= −M ,   ( ) ( )cm c m= −h s h h s . 
 
Now eqn (5.47) reduces to an equation with only one unknown constant tensor iσ  
 

0 1[ ]( ) ( )[ ( ) ( )]
I

i i cm i i im i c i cmic
I

i i

c f d
c c

σ σ σ σ ρ
Γ

−= + − + + + +∫p p M h p s M s h s s  

11 ( )[ ( )][ ( , ) ( )] ( , )[ ( ) ( )]
I

i c H m c H m cm i cm
I

i

f d
c

µ µ σ ρ
Γ

− −− − + +∫ s 1 p M s 1 B n M s B n M s h s s .   (5.48) 

 
The tensor 0( )i λp  for the ellipsoidal inclusion Iv  is determined by the relation (5.45).  
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1.6 Computer Code 
The program package for the solution of the three-dimensional problems for the bounded and unbounded solids with 
inclusions has been developed. The package has been compiled by means of the programming environment 
“Lahey/Fujitsu Fortran 95”.  The text of the program modules is below. 
 
module global 
      implicit none 
      REAL::       agl,bgl,sgl 
      INTEGER:: ios,imax,nrr,mark 
      character (len=50):: line 
      INTEGER,PARAMETER::  nr=3,ncmax=2 
      REAL,DIMENSION(6,6)::gg,qq,lhm,lhi,ed,m6d,bbe 
      REAL,DIMENSION(6)::  gg6,qq6,lhm6,lhi6,sr 
      REAL:: ppp,prp,pzp,pi 
 
end module global 
!c>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
 
program MNmain_110 
USE global 
implicit none 
 
REAL :: ae,be,ce,a0,a1,a2,dg,dgt,dh,df,gmkpe,gmmue,gmn1e,gmn2e,gmn3e,kpa,& 
l0,l1,l2,mgt,mzz,dzz,n1a,n2a,n3a,ne,mea,mef,mua,ke,n1e,n2e,n3e,g,g0,g1,g2,gm,& 
r,r3,ph,pf,pk,p1,kp1,kp2,cx,m0,k0,t0,n0,j,j1,j2,j3,& 
kp,tg,lg,ng,mg,pg,tz,lz,lzt,nz,mza,pz,mzm,mz1,mz2,mh1,mh2,mhm,c,& 



STCU                   PROJECT P110 - FINAL REPORT                                    FF PAGE 24  

       
8/11/2005  

rm,al,al1,al2,alm,bt,bt1,bt2,btm,kv1,kv2,kvm,nup,kc11i1,kc12i1,kc11i2,& 
kc12i2,kc11im,kc12im,mc,dc,mct,dct,pc,lc,tc,cc,kpe,mue,lea,kea,ema21,ema11,& 
bg1,bg2,bg3,alg1,alg3,alg4,alg5,alg6,lct,nc,w,w1,w2,y,tt1,tt6 
 
REAL ::a,b,x,lb,s0,e0,ee0,tt0,muav,rmue,kpav,rkpe,n1av,rn1e,n2av,rn2e,rn3e,n3av 
INTEGER :: i,ir,js,ic1,ic2,iw1,imu1,ik1,ik,iaa,ikp1,iia,ni,ifi,itt 
 
!>>>>>ARRAYS 
real,dimension (nr)::cr,kv,k,mu,m,l,nu1,nu2,nu3,alf,bti, kz,mz, ka,& 
                     ma,la,na,fa, kkc,mkc, kf,mf, kh,mh, f0,f1,f2, ai,bi,ci,& 
                     d0,d1,d2, h0,h1,h2, c0,c1,c2, b0,b1,b2, r0,r1,r2,& 
                     kq,mq,lq 
 REAL,DIMENSION (6)::   s,e,sc,xg,x6,y6,snr 
 REAL,DIMENSION(nr,6):: sBb,sE,sN,t,sB 
 REAL,DIMENSION(6,6)::  y6d,x6d,brm 
 REAL,DIMENSION  (2)::  lcn,mic 
!>>>>>DATA 
!      call input 
pi = 3.1415926535897932385E0 
sgl=56. 
imax=nr-1 
nrr=nr+ncmax 
open (unit=1, file="mn01.d", status="old",& 
      action="read", form="formatted", position="rewind") 
i=0 
PRINT *,"read_mn01" 
do 
read (unit=1, fmt="(f8.2)", iostat=ios) & 
kv(i+1),mu(i+1),nu1(i+1),nu2(i+1),nu3(i+1) 
if (nr-i-1 > 0) then;  i = i + 1; 
else;  exit;  endif 
enddo 
PRINT*, 'i=',i 
REWIND(1) 
CLOSE(1) 
 
write(*,103)     kv,mu,nu1,nu2,nu3 
103 FORMAT(/20X,(5 f8.2),/20x,(5 f8.2)) 
 
 
OPEN(UNIT=2,FILE="mn02.r") 
 
!READ(1,*) 
!Esml_plstrl 
!kv(nr) = 4.45;  mu(nr) = 1.14 
!nu1(nr) = 13.3; nu2(nr) = 4.09; nu3(nr) = -9.45; alf(nr) = 1. 
!    'E-glass 
!kv(1) = 38.87;  mu(1) = 29.2 
!nu1(1) = 268.; nu2(1) = -120.; nu3(1) = 105.; alf(1) = 1. 
!    'Bor 
!kv(2) = 538.;   mu(2) = 172.0; 
!nu1(2) = -840.; nu2(2) = -420.; nu3(2) = -390.; alf(2) = 1. 
 
alf=1.; w2=10.                  !w2 
!    'k,m,a,b 
 
    k=kv*3.;      m=2.*mu;          l=(k-m)/3.   !T(6) 
    bti=k*alf;    mh=m-m(nr);       kh=k-k(nr)   !l 
    ai=nu1/2.;    bi=nu2;           ci=4.*nu3    !Murn 
 
!>>>>>>>>>>r=2 
do ic2 = 1,1 
cr(2) = (ic2 - 1.) * 2. / 10. 
!>>>>>>>>>>>>>>>>>>iw 
      do iw1 = 1,1                  ! w1 
      If (iw1== 1) then 
      w1 = 15.001; endif 
      If (iw1== 2) then 
      w1 = 1000.; endif 
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      If (iw1== 3) then 
      w1 = 0.0001; endif 
write(2,102)w1,w2 
write(*,102)w1,w2 
102 FORMAT(/10X,(2 f8.2),/) 
 
 
do ic1 = 1,1                  !loop 1 cr1 
if (ic1==1) then 
cr(1)=.45 
!cr(1)=ic1 * 1./10000. 
endif 
!cr(1)=(ic1 - 1) / 10. 
cr(nr) = 1 - cr(1) - cr(2) 
if (cr(nr) < 0.) then; goto 201 
endif 
 
!>>>'reference_compar_body' 
m0=0.; k0=0. 
do i=1,nr 
m0=m0+cr(i)/m(i); k0=k0+cr(i)/k(i) 
enddo 
  m0=1/m0;  k0=1/k0 
  t0 = (2.*k0+m0)/3.; l0=(k0-m0)/3.; n0=(k0+2.*m0)/3. 
  g0 = -1./(2.*m0);   g1=-1./(2.*n0) 
 
!'a_begin' 
mf=m-m0;    kf=k-k0 
 do  iia = 1, imax 
   w = w2 
   if (iia==1) then 
   w = w1; 
   endif 
                          r = w**2 - 1.; cx = sqrt(abs(r)) 
                          if (w > 1.) then 
                          j = log(w + cx) 
                          endif 
                          y = cx / w 
 
                          if (w < 1.) then 
                          j = atan(y) 
                          endif 
                          j1 = (j * w / cx - 1.) / r;  j2 = 1. - j1 
                          j3 = ((1. + 2. * w**2) * j1 - 1.) / (2 * r) 
                          r3 = j3 * t0 / m0 
     tg = g1 * (j2 + r3);    lg = -g1 * r3; ng = 2 * g1 * (j1 + r3); 
     mg = g0 * j2 + tg / 2.; pg = g0 * (1. + j1) + 2. * lg 
 
!(tg,lg,lg,lg,pg,mg) 
xg=(/tg,lg,lg,ng,pg,mg/) 
call inpt6(gg,xg)          !G 
call inpt2(lhm,k(nr),m(nr))!lam 
call elnu(y6d,gg,lhm)      ! 
call ted(ed); y6d=ed-y6d 
call elnu(qq,lhm,y6d)      !Q 
call inpt2(m6d,1./k(nr),1./m(nr)) !m 
call elnu(y6d,qq,m6d); y6d=ed-y6d 
call ind6(x6,y6d); call rel(y6,x6)!BE 
call inpt6(bbe,y6) 
sr=0; sr(1)=1.            !in matrix 
call s6el(s,bbe,sr) 
!write(6,100)cr(1),s 
 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 6:46 pm 
    dg = lg + tg;         dgt = ng + 2. * lg 
    mg = tg - 2. * lg;    mgt = ng - lg 
 
do i=1,imax 
if (iia == i) then 
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ph = mh(i); pf = mf(i); dh = kh(i); df = kf(i) 
endif 
ENDDO !i=1,imax 
 
!    'm=p in index' 
    mc = 1. - pf * mg;   dc = 1. - df * dg; mct = 1. - pf * mgt 
    dct = 1. - df * dgt; mc = 1. - pf * mg; pc = 1. - pf * pg 
tc = (2. * dc + mc) / 3.;  lc = (dc - mc) / 3.; lct = (dct - mct) / 3. 
nc = (dct + 2.* mct) / 3.; cc = nc * tc - 2. * lc * lct 
!                          'za 
   tz = (nc * tg - 2. * lc * lg) / cc; lz = (nc * lg - lc * ng) / cc 
   lzt = (tc * lg - lct * tg) / cc;    nz = (tc * ng - 2 * lct * lg) / cc 
   mza = mg / mc; pz = pg / pc 
!            'z 
    mzz = (tz + 2. * nz - 2. * lz - 2. * lzt + 6. * mza + 6. * pz) / 15. 
    dzz = (2. * (tz + lz + lzt) + nz) / 3. 
 
do i=1,imax 
if (iia ==i) then 
mz(i) = mzz; kz(i) = dzz 
endif 
enddo ! i=1,imax 
enddo !iia = 1,imax 
 
ma(nr)=1.; ka(nr)=1. 
do i=1,imax 
ma(nr)=ma(nr)+cr(i)*mh(i)*mz(i) 
ka(nr)=ka(nr)+cr(i)*kh(i)*kz(i) 
enddo ! i=1,imax 
ma(nr) = 1./ma(nr); ka(nr)=1./ka(nr) 
 
do i=1,imax 
ma(i) = ma(nr) * (1.+ mh(i) * mz(i)) 
ka(i) = ka(nr) * (1.+ kh(i) * kz(i)) 
enddo     !i=1,imax 
na = (ka + 2. * ma) / 3.; la = (ka - ma) / 3.; fa = l * ka + 3. * m * la 
 
!>>>>>>>>>>>>>>       'ef_const: 
ke = 0.; mef = 0.; n1e = 0.; n2e = 0.; n3e = 0. 
do i = 1,nr 
    mef = mef+cr(i)*m(i)*ma(i) 
    ke  =  ke+cr(i)*k(i)*ka(i) 
!    'geom 
!   'n1e = n1e + cr(i) * (la(i) * (l(i) * ka(i) * (2 * ka(i) + ma(i)) + 3 * na(i) * fa(i))) 
!  'phys 
! 'n1e = n1e + cr(i) * (nu1(i) * ka(i) ** 3 + 3 * nu2(i) / 2 * la(i) * ka(i) * (ka(i) + ma(i)) + 6 * nu3(i) * la(i) ** 2 * na(i)) 
n1e=n1e+cr(i)*(la(i)*(l(i)*ka(i)*(2.*ka(i)+ma(i))+3.*na(i)& 
*fa(i))/2.+nu1(i)*ka(i)**3+3.*nu2(i)/2.*la(i)*ka(i)*(ka(i)+ma(i))& 
+6.*nu3(i)*la(i)**2*na(i)) 
n2e=n2e+cr(i)*(ma(i)**2*(fa(i)/2.+nu2(i)*ka(i)+4.*nu3(i)*la(i))& 
-(l(i)*ka(i)+m(i)*la(i))/2.) 
n3e=n3e+cr(i)*(3.*m(i)*ma(i)*(ma(i)**2-1.)/8.+nu3(i)*ma(i)**3) 
enddo !    i = 1,nr 
 
    mue = mef / 2;    kpe = ke / 3;    ne = (ke - mef) / 3 / ke 
    ae = n1e / 2;    be = n2e;    ce = 4 * n3e 
 
mea = 1. / mef; kea = 1. / ke; lea = (kea - mea) / 3. 
ema21 = (kea - mea) / 3. 
ema11 = (kea + 2. * mea) / 3. 
 
!'bt_Truesdell' 
bg1 = (n1e + 6. * n2e + 8. * n3e) / (6. * mue) 
bg2 = -2. * (n2e + 2. * n3e) / mue 
bg3 = 4. * n3e / mue 
 
!'alfa' 
alg1 = (ke - mef) / 3. / mue 
alg3 = 3. * bg1 + bg2 - alg1 
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alg4 = -2. * n2e / mue 
alg5 = 2. * alg1 - 2. - alg4 ! 
alg6 = 4. + bg3 
 
!    'koefVAR 
    muav = (mu(1) * cr(1) + mu(2) * cr(2) + mu(nr) * cr(nr)) 
    rmue = Sqrt(Abs((mue ** 2 - muav ** 2))) / mu(nr) 
        kpav = (kv(nr) * cr(nr) + kv(1) * cr(1) + kv(2) * cr(2)) 
        rkpe = Sqrt(Abs((kpe ** 2 - kpav ** 2))) / kv(nr) 
    n1av = (nu1(nr) * cr(nr) + nu1(1) * cr(1) + nu1(2) * cr(2)) 
    rn1e = Sqrt(Abs((n1e ** 2 - n1av ** 2))) / nu1(nr) 
        n2av = (nu2(nr) * cr(nr) + nu2(1) * cr(1) + nu2(2) * cr(2)) 
        rn2e = Sqrt(Abs((n2e ** 2 - n2av ** 2))) / nu2(nr) 
    n3av = (nu3(nr) * cr(nr) + nu3(1) * cr(1) + nu3(2) * cr(2)) 
    rn3e = Sqrt(Abs((n3e ** 2 - n3av ** 2))) / nu3(nr) 
 
!    'sh conc' 
 !   'd_vol conc' 
  !  'kc=Br(2) 
mkc = m * ma * mea;    kkc = k * ka * kea !b=l*A*M 
kc11i1 = (kkc(1) +2.*mkc(1))/3.;  kc12i1=(kkc(1)- mkc(1)) /3. 
kc11i2 = (kkc(2) +2.*mkc(2))/3.;  kc12i2=(kkc(2)- mkc(2)) /3. 
kc11im = (kkc(nr)+2.*mkc(nr))/3.; kc12im=(kkc(nr)-mkc(nr))/3. 
sr=0.; sr(3)=1. 
call inpt2(brm,kkc(nr),mkc(nr)) !Bm 
call s6el(s,brm,sr)             !s_m 
lcn=(/k(nr),m(nr)/)             !la_m 
mic=(/1./k(1)-1./k(nr),1./m(1)-1./m(nr)/) 
 
!do itt=1,10 
!call coat(sc,lcn,mic,w1,pi*(1.-1./itt),pi/2.,s) !sc 
!write(*,100)pi*(1.-1./itt),sc 
!end do 
 
!write(*,100)cr(1),rkpe,rmue,kc11i1,kc12i1,mkc(1),kkc(1) !rn1e,rn2e,rn3e,bg3 
!write(2,100)cr(1),rkpe,rmue,rn1e,rn2e,rn3e,alg5 
100 FORMAT(6X,7(e10.2)) 
enddo !ic1_main 
 
write(*,101) 
write(2,101) 
101 FORMAT(//) 
201 WRITE(*,*)"errend_cr1=",cr(1)    !errend 
enddo !iw1 
enddo !ic2 
 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
!    'STRESS do 2 
                tt1 = mue / 2. 
                tt6 = 0. 
s = 0.;    e = 0.;    s(1) = tt1;    s(6) = tt6 
tt0=0. 
!invariant 
do js = 1, 3 
    s0 = s0 + s(js) 
    tt0 = tt0 + s(js) ** 2 
enddo!    js =1,3 
do js = 4, 6 
    tt0 = tt0 + 2. * (s(js) ** 2) 
enddo! js = 4,6 
 
!    'micronapr 
!   '(l,m,a,b,c) 
a0=-s0**2*mea*(ae*kea**2-(3.*ae+2.*be)*ne*kea**2+((3.*be+ce)*ne-be)*ne*(2.-3.*ne)*mea**2& 
+ce*ne**2*mea**2)-tt0*(be-ne*(3.*be+ce))*mea**3 
a1 = -2.* (be * kea - ce * ne * mea) * mea ** 2 * s0 
a2 = -ce * mea ** 3 
!  'c0=kea*s0 
e0 = kea * s0 + 3. * a0 + a1 * s0 + a2 * tt0 
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ee0 = tt0 * mea ** 2 + s0 ** 2 * lea * (kea + mea) 
!'ne = l(i) / k(i) 
nup = -(ema21 + a0 / s(1)) / (ema11 + a2 * s(1) + a1 + a0 / s(1)) 
!'nup = -(ema21) / (ema11) 
!'stress_components 
 
do i= 1,nr 
f0(i)=e0**2*(ai(i)*ka(i)**2+bi(i)*la(i)*(3.*ka(i)+ma(i))+ci(i)*la(i)**2)& 
+ee0*bi(i)*ma(i)**2 
f1(i) = e0 * 2 * ma(i) * (bi(i) * ka(i) + ci(i) * la(i)) 
f2(i) = ci(i) * ma(i) ** 2 
 
!'repetition_eT=eps=a(sg) 
a0 = -s0**2*mea*(ae*kea**2-(3.*ae+2.*be)*ne*kea**2+((3.*be+ce)*ne-be)*ne*(2.-3.*ne)*mea**2& 
+ce*ne**2*mea**2)-tt0*(be-ne*(3.*be+ce))*mea**3 
a1 = -2.*(be*kea-ce*ne*mea)*mea**2*s0 
a2 = -ce * mea ** 3 
 
!'g0-g2 
    f0(i) = f0(i) + f1(i) * (a0 + lea * s0) + lea ** 2 * f2(i) * s0 ** 2 
    f1(i) = f1(i) * (mea + a1) + 2 * mea * lea * s0 * f2(i) 
    f2(i) = a2 * f1(i) + f2(i) * mea ** 2 
 
!        'sEi=ti(e,H) 
 
    a0 = f0(i);    a1 = f1(i);    a2 = f2(i) 
    do js = 1, 6 
    if (js <=3) then 
    sE(i, js) = a0 + a1 * s(js) + a2 * s(js) ** 2 
    else 
    sE(i, js) = a1 * s(js) + a2 * s(js) ** 2 
endif 
!    'sB=s 
!    'B=B(a,b) 
a = kkc(i); b = mkc(i); lb = (a - b) / 3. 
x = lb * s0 
if (js <= 3) then 
sB(i, js) = x + b * s(js) 
else 
sB(i, js) = b * s(js) 
endif 
enddo!        Next js 
enddo!        Next i 
 
!    'sBb 
    do i = 1,nr 
r0(i) = f0(i) - f0(nr); r1(i) = f1(i) - f1(nr); r2(i) = f2(i) - f2(nr) 
    If (i < nr) Then 
    kq(i) = (ka(i) - ka(nr)) / (k(i) - k(nr)); Else 
    kq(i) = 0. 
endif 
    If (i < nr) Then 
    mq(i) = (ma(i) - ma(nr)) / (m(i) - m(nr)); Else 
    mq(i) = 0. 
    endif 
lq(i) = (kq(i) - mq(i)) / 3. 
h0(i) = kq(i) * r0(i) + lq(i) * r1(i) * s0 + lq(i) * r2(i) * tt0 
h1(i) = mq(i) * r1(i) 
h2(i) = mq(i) * r2(i) 
enddo!    Next i 
 
!    'eai 
      d0(nr) = 0;        d1(nr) = 0;        d2(nr) = 0 
 do i = 1,imax 
        d0(nr) = d0(nr) - cr(i) * h0(i) 
        d1(nr) = d1(nr) - cr(i) * h1(i) 
        d2(nr) = d2(nr) - cr(i) * h2(i) 
enddo!        Next i 
       do i = 1,imax 
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    d0(i) = d0(nr) + h0(i) 
    d1(i) = d1(nr) + h1(i) 
    d2(i) = d2(nr) + h2(i) 
enddo!        Next i 
 
!'sgbi 
 do i = 1,nr 
        c0(i) = k(i) * d0(i) + l(i) * d1(i) * s0 + l(i) * d2(i) * tt0 
        c1(i) = m(i) * d1(i) 
        c2(i) = m(i) * d2(i) 
!        'li*ai*et 
        kq(i) = k(i) * ka(i);        mq(i) = m(i) * ma(i);        lq(i) = (kq(i) - mq(i)) / nr 
a0 = -s0 ** 2 * mea * (ae * kea ** 2 - (3 * ae + 2 * be) * ne * kea ** 2 + ((3 * be + ce) * ne - be) * ne * (2 - 3 * ne) * mea ** 2 + ce * ne ** 2 * 
mea ** 2) - tt0 * (be - ne * (3 * be + ce)) * mea ** 3 
a1 = -2 * (be * kea - ce * ne * mea) * mea ** 2 * s0 
a2 = -ce * mea ** 3 
        h0(i) = kq(i) * a0 + lq(i) * a1 * s0 + lq(i) * a2 * tt0 
        h1(i) = mq(i) * a1 
        h2(i) = mq(i) * a2 
!        'sBb=ti+tei+tai 
!'        b0(i) = f0(i) + c0(i) + h0(i) 
!'        b1(i) = f1(i) + c1(i) + h1(i) 
!'        b2(i) = f2(i) + c2(i) + h2(i) 
        b0(i) = c0(i) 
        b1(i) = c1(i) 
        b2(i) = c2(i) 
!    'sgbi 
    a0 = b0(i) 
    a1 = b1(i) 
    a2 = b2(i) 
 do js = 1, 6 
        If (js <=3) Then 
        sBb(i, js) = a0 + a1 * s(js) + a2 * s(js) ** 2; Else 
        sBb(i, js) = a1 * s(js) + a2 * s(js) ** 2 
        endif 
enddo!       js = 1, 6 
enddo!       i= 1,nr 
!'END_STRESS 
 
!call output 
STOP "OK     6 Jul 2005" 
end program mnmain_110 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
 
 
 
 
 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
subroutine coat(tau,lc,m,w,tt,fi,sincl) 
implicit none 
!lc-coatmatr m=mui-mucoatm 
real, dimension (6,6):: Bn,kr,y 
real, dimension(3) :: n 
REAL, DIMENSION(2)::lc,m 
REAL:: a,b,nu,G,w,fi,tt,snt,cst,snf,csf,g1,gc,g2,g3,g4 
REAL:: x1,x2,x3 
REAL:: suu,stt,sff,stf,suf,sut 
REAL,dimension (6)::src,sincl,tau 
INTEGER::i,j 
!data a,b,G,nu /1.0,2.0,6.,.3/ 
!data n /0.1,0.2,0.3/ 
!DATA src /1,0,0,0,0,0/ 
!a=2*G; b=a*nu/(1-nu) 
!tt=.32; fi=2.4 
!PRINT*,'ncoat 7 Jun 2005' 
 
a=lc(2); b=a*(lc(1)-a)/(lc(1)+2*a) 
snt=SIN(tt); cst=COS(tt) 
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snf=SIN(fi); csf=COS(fi) 
gc=1/(cst**2+w*snt**2); x1=SQRT(gc) 
n(1)=w*snt*csf*x1;n(2)=w*snt*snf*x1 
n(3)=cst*x1 
 
do i=1,3 
Bn(i,i)=(a+b)*(n(i)**2-1.)**2 
enddo                    !i=1,3 
do i=1,3 
        do j=1,3 
Bn(i,j)= a*(n(i)*n(j))**2+b*(n(i)**2-1.)*(n(j)**2-1.)!       i,j=1,2,3 
        enddo   !j=1,3 
enddo   !i=1,3 
do i=1,2 
Bn(i,6)=(a+b)*n(1)*n(2)*(n(i)**2-1.);bn(6,i)=bn(i,6)!        i=1,2 
enddo !i=1,2 
Bn(4,4)=a/2*(1.-n(2)**2-n(3)**2+2*n(2)**2*n(3)**2)+b*(n(2)*n(3))**2 
Bn(5,5)=a/2*(1.-n(1)**2-n(3)**2+2*n(1)**2*n(3)**2)+b*(n(1)*n(3))**2 
Bn(6,6)=a/2*(1.-n(1)**2-n(2)**2+2*n(1)**2*n(2)**2)+b*(n(1)*n(2))**2 
Bn(3,6)=n(1)*n(2)*(a*n(3)**2+b*(n(3)**2-1.)); bn(6,3)=bn(3,6) 
Bn(4,6)=n(1)*n(3)*(a*(n(2)**2-0.5)+b*n(2)**2);bn(6,4)=bn(4,6) 
Bn(5,6)=n(2)*n(3)*(a*(n(1)**2-0.5)*b*n(1)**2);bn(6,5)=bn(5,6) 
Bn(1,4)=n(2)*n(3)*(a*n(1)**2+b*(n(1)**2-1.)); bn(4,1)=bn(1,4) 
Bn(2,4)=n(2)*n(3)*(n(2)**2-1.)*(a+b);         bn(4,2)=bn(2,4) 
Bn(3,4)=n(2)*n(3)*(n(3)**2-1.)*(a+b);         bn(4,3)=bn(3,4) 
Bn(5,4)=n(1)*n(2)*(a*(n(3)**2-0.5)+b*n(3)**2);bn(4,5)=bn(5,4) 
Bn(1,5)=n(1)*n(3)*(n(1)**2-1.)*(a+b);         bn(5,1)=bn(1,5) 
Bn(2,5)=n(1)*n(3)*(a*n(2)**2+b*(n(2)**2-1.)); bn(5,2)=bn(2,5) 
Bn(3,5)=n(1)*n(3)*(n(3)**2-1.)*(a+b);         bn(5,3)=bn(3,5)!or nool 
 
call inpt2(y,m(1),m(2)) 
call bnu(kr,bn,y) 
call ted(y); kr=y+kr 
call s6el(src,kr,sincl) 
 
g1=csf**2*src(1)+snf*2.*src(2)+2.*csf*snf*src(6) 
g2=snf*src(4)+csf*src(5) 
g3=csf*snf*(src(2)-src(1))+(csf**2-snf**2)*src(6) 
g4=csf*src(4)-snf*src(5) 
tau(1)=(w**2*snt*g1+cst**2*src(3)+2*w*cst*snt*g2)*gc       !suu= 
tau(2)=(cst**2*g1+w**2*snt**2*src(3)-2*w*cst*snt*g2)*gc    !stt= 
tau(3)=snf**2*src(1)+csf**2*src(2)-2*csf*snf*src(6)        !sff= 
tau(4)=(cst*g3-w*snt*g4)*x1                                !stf= 
tau(5)=(w*snt*g3+cst*g4)*x1                                !suf= 
tau(6)=(w*cst*snt*(g1-src(3))+(cst**2-w*snt**2)*g2)*gc     !sut= 
 
return 
end subroutine !coat(tau,lc,m,w,tt,fi,sincl) 
 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
subroutine bnu(k,b,a) 
implicit none 
 
REAL, DIMENSION(6,6)::k,b,a 
INTEGER ::i,j,m,p,q 
 
k=0. 
!PRINT*,'bnu' 
do i=1,3 
do j=1,3 
        do m=1,3 
        k(i,j)=k(i,j)+b(i,m)*a(m,j) 
        enddo 
enddo!j 
        do p=4,6 
        k(i,p)=2*b(i,p)*a(p,p) 
        k(p,i)=b(p,m)*a(m,i) 
        enddo!p 
enddo!i 
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        do p=4,6 
        k(p,p)=.5+2*b(p,p)*a(p,p) 
        do q=4,6 
        k(p,q)=2*b(p,q)*a(q,q) 
                k(q,p)=2*b(q,p)*a(p,p) 
        enddo!q 
        enddo!p 
return 
end subroutine !bnu(k,b,a) 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
subroutine elnu(y,b,a) 
implicit none 
 
REAL, DIMENSION(6,6)::y,b,a 
INTEGER:: i,j,m,p,q 
y=0. 
do i=1,3 
do j=1,3 
        do m=1,3 
        y(i,j)=y(i,j)+b(i,m)*a(m,j) 
        enddo 
enddo!j 
enddo!i 
        do p=4,6 
        y(p,p)=2*b(p,p)*a(p,p) 
        enddo!p 
return 
end subroutine !elnu(y,b,a) 
 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
subroutine s6el(s,be,sr) 
implicit none 
 
real, dimension (6,6)::be 
real, dimension (6)::s,sr 
INTEGER:: i,j,m,p,q 
 
s=0. 
do i=1,3 
do m=1,3 
        s(i)=s(i)+be(i,m)*sr(m) 
enddo!m  
enddo!i 
 
        do p=4,6 
s(p)=2.*be(p,p)*sr(p) 
        enddo!p 
return 
end subroutine !s6el(s,be,sr) 
 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
subroutine ted(t1) 
implicit none 
 
REAL:: a 
REAL,DIMENSION(6,6)::t1 
INTEGER i,j 
t1=0. 
do i=1,3 
        do j=1,3 
if (i==j) then 
t1(i,j)=1. 
else 
t1(i,j)=0. 
end if 
enddo 
enddo!i=1,3 
       do i=4,6 
        do j=4,6 
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        if (i==j) then 
t1(i,j)=.5 
        else 
t1(i,j)=0. 
end if 
enddo 
enddo!i=4,6 
return 
end subroutine !ted 
 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
subroutine inpt6(t,x) 
!t,x6! 
implicit none 
      integer i,j 
      REAL:: r,b,l,lT,n,m,mT 
      REAL,DIMENSION(6,6)::t 
      REAL,DIMENSION(6)::x 
t=0. 
t(1,1)=(x(1)+x(6))/2.;            t(2,2)=t(1,1) 
t(1,2)=(x(1)-x(6))/2.;            t(2,1)=t(1,2) 
t(1,3)=x(2);t(2,3)=t(1,3); t(3,1)=x(3);t(3,2)=t(3,1) 
t(3,3)=x(4); 
t(4,4)=x(5); t(5,5)=t(4,4);     t(6,6)=x(6); 
return 
end subroutine !inpt6(t,x) 
 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
subroutine inpt2(t,b,m) 
implicit none 
      integer i,j 
      REAL:: r,b,m,l 
      REAL,DIMENSION(6,6)::t 
t=0. 
t(1,1)=(b+m)/2.;t(2,2)=t(1,1); t(3,3)=t(1,1); 
t(1,2)=(b-m)/2.;               t(2,1)=t(1,2) 
t(1,3)=t(1,2); t(2,3)=t(1,3);  t(3,1)=t(2,1);t(3,2)=t(3,1) 
t(4,4)=m; t(5,5)=t(4,4);       t(6,6)=m 
return 
end subroutine !inpt2(t,b,m) 
 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
subroutine umn_gA(t,g,A) 
!t6,g6,a2! 
implicit none 
REAL,DIMENSION(6)::t,g 
REAL,DIMENSION (2)::A 
REAL::bg,bgt,pg,pgt,mg,mgt, & 
      bt,btt,pt,ptt,mt,mtt 
bg=g(1)+g(2);    bgt=2.*g(2)+g(4) 
pg=g(1)-2.*g(2); pgt=g(4)-g(2) 
bt=bg*a(1);      btt=bgt*a(1) 
pt=pg*a(2);      ptt=pgt*a(2) 
mt=g(5)*a(2);    mtt=g(6)*a(2) 
t(1)=(2.*bt+pt)/3.; t(2)=(bt-pt)/3. 
t(3)=(btt-ptt)/3.;  t(4)=(btt+2.*ptt)/3. 
t(5)=mt; t(6)=mtt 
return 
end subroutine !umn_gA(t,g,A) 
 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
subroutine rel(y,x) 
implicit none 
REAL::cx 
REAL, DIMENSION(6)::x,y 
cx=x(1)*x(4)-2.*x(2)*x(3) 
y(1)=x(4)/cx;  y(2)=-x(2)/cx 
y(3)=-x(3)/cx; y(4)=x(1)/cx 
y(5)=1./x(5);  y(6)=1./x(6) 
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return 
end subroutine   !rel(y,x) 
 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
subroutine ind6(x,t) 
implicit none 
REAL, DIMENSION(6),intent(out)::x 
REAL, DIMENSION(6,6),intent(in)::t 
x(1)=t(1,1)+t(1,2) 
x(2)=t(1,3); x(3)=t(3,1) 
x(4)=t(3,3); x(5)=t(4,4) 
x(6)=t(6,6) 
return 
end subroutine !ind6(x,t) 
 
 
 
 
 
!mark 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
subroutine inpt1(x, y, nrow) 
use global 
!get values 
      integer nrow 
      REAL:: x(nr), y(nr) 
      nrow = 10 
return 
end subroutine inpt1 
 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
use global 
implicit none 
!Print out 
    print *,  'The ', agl,' and ' , bgl 
    print *, ' is ' , sgl 
return 
end 
 
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
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1.8. User interface “ Micro-mechanics of fiber reinforced bounded and unbounded solids: effective local 
and non-local thermo-elastic properties, stress concentration factors and edge effect” 
The user interface “ Micro-mechanics of fiber reinforced bounded and unbounded solids: effective local and 

non-local thermo-elastic properties, stress concentration factors and edge effect” is developed, being a part of the 
entire program complex for numerical solution of multi-scale static problems of material with inclusions. The 
abbreviation of the program complex is MSSPMI (Multi-Scale Static Problems of Materials with Inclusions). 

 
1. Development of user interface  
The complex is developed in Lahey/Fujitsu Fortran 95 LF95 environment by use of user-interface and graphics 

development tool-set Winterector Starter Kit (WiSK). Separate applied programs are developed by use of 
programming systems Delphi 6 and Visual Basic for Applications. The environment of a program complex is 
integrated at a level of a source code with applied programs which are developed in language LF95, initiates start of 
programs and access to the input and output data of the programs developed with use of other programming 
languages. 

2. The solution of multi-scale static problems of material with inclusions. 
The multi-scale problem under study is that of the decay of edge effect in non-homogeneous material with its 

structure being considered at different levels. The non-homogeneous material is in agreement with semi-limited 
matrix reinforced by rectangular fiber, taken in a general case with isotropic covering. The problem is considered by 
modeling a piecewise homogeneous medium (Fig.1, Fig.2) and applying the continuity approach based on the overall 
properties. 

2.1. The symmetrical deformation of material is caused by influence of transverse (perpendicular to the reinforce 
direction) periodic piecewise constant surface load. The plane boundary problems of theory of elasticity for 
piecewise homogeneous and transverse isotropic bodies, the ones with the overall properties and quantity criteria of 
the decay of edge effect are made use of as the calculation scheme. 

The calculation area is taken in the Cartesian coordinates 321 xxOx . 21Oxx  is the plane of deformation, 

),( 21 xxx  is a point of the plane. The geometry of calculation area and the scheme of material load are shown in 
the Fig.1 and Fig.2 with transverse deformation of reinforced matrix and matrix with covering respectively. 

2.2. The problems under consideration include the following research directions: 
• the analysis of stress-strain state of non-homogeneous material near the concentration area in the form of 

rectangular inclusions that are subjected to transverse deformation by modeling piecewise homogeneous bodies; 
• the analysis of the decay of edge effect in non-homogeneous material caused by non-uniform surface load, 

the material being subjected to transverse deformation, by modeling piecewise homogeneous media; 
• the analysis of the influence of thin isotropic covering on the decay of edge effect in the case of non-

homogeneous material; 
2.3. Solving the multi-scale problem of stress-strain state and analyzing the decay of edge effect for the 

calculation scheme under study require the following procedures: 
• The stress-strain state of material for the finite calculation area, which is in good agreement with the 

structure of the material and satisfies the conditions of stress-strain state in the direction of the damping of the 
boundary effect, is determined at the level of micro-mechanics. 

• The representative element of the material is chosen for the analysis of the damping of boundary effect in 
non-homogeneous material. This element involves different structure levels of investigating the elastic properties of 
non-homogeneous material. Пb , ПH  are the sizes of the representative element of material that are determined by 

the values Пbρλ , when the size of the calculation area increases in the direction 1Ox  and 2Ox , respectively; 

ρλ  – is the maximum length of the decay of edge effect (maximum extent area of the boundary effect), determined 

with an accuracy of %ρ . The conditions above can be written down as follows: 

ρρλ constbb
ПHHbb =≥≥ Π ,)( , ( )2, 21

max x
xx ρ

ρλ Γ∈
= ,      (2.1) 

where ρΓ – is the edge of boundary effect zone,  

b  – is the size of calculation area, on which a self-balanced load function is given, H  – is the size of calculation 
area in the direction of the damping of boundary effect. 
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• The determination of the boundary effect zone for the representative element of material by modeling 
piecewise homogeneous medium. Herewith, the satisfaction of the following condition is taken as the criterion for 
the decay of edge effect in the case of transverse matrix deformation (Fig.1): the determined strain state is for normal 
stresses is reached with the given accuracy in the direction of 2Ox axis in the area of inclusions and matrix. 

3. The description of calculation scheme and the analysis of the results obtained 
3.1 The calculation area and the load scheme 
The symmetrical transverse deformation of semi-limited matrix reinforced by rectangular fiber is considered. 

The same problem is considered when the influence of fine isotropic covering is taken into account. The appropriate 
calculation areas, schemes of loading and fastening are presented in the Fig. 1 and Fig.2 

x 2
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Fig.1 The transverse deformation of semi-limited matrix reinforced by rectangular fibers. Geometry and 

scheme of loading 
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Fig. 2 The transverse deformation of semi-limited matrix with covering reinforced by rectangular fibers. 

Geometry and scheme of loading 
 

The intensity of surface load is assigned by relation ( ) 0
1221 0,)( pxxp =σ= , kbdx +≤ 5.01 , 

,...,k 10= . Here b  is a period of load in the direction of the 1Ox  axis. Along the 3Ox  axis the load remains 
unchangeable. The conditions on infinity meet the terms of joint resistance. The conditions of loading and fastening 
that are given determine the state of plane deformation ( 21Oxx  is the deformation plane, ),( 21 xxx  a point of the 

plane) and the presence of axises of symmetry 01 =x , 21 /bx = which are marked in the Figures as Sym.1 and 

Sym.2, respectively. The decay of edge effect is considered in the direction of the 2Ox axis. 
The material of the matrix with inclusions is formed with the same element as that of the material microstructure, 

which is a square, where mn
incl

mn
matr

mn AAA += , mn
matrA , mn

inclA  are areas occupied by the matrix and inclusions, 

respectively. Thereby, the area occupied by the material can be presented as follows: ∑∑
= =

=
M

m

N

n

mnAA
1 1

, where M, 

N are the elements of material microstructure in the direction 1Ox  and 2Ox . The three-dimensional volumes of the 

matrix and that of inclusions are defined by relations matr
mn
matr

mn
matr cAAc == , incl

mn
incl

mn
incl cAAc == . 

When the covering is present, the area occupied by the material can be presented as follows: 

erAA cov
' Ω+= , where ercovΩ  is an area occupied by the covering. 
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According to the calculations schemes illustrated in the Fig.1 ad Fig.2 the element of material microstructure is 
considered for calculation area. With the same element the calculation area for semi-limited matrix with inclusions 
loaded along the 1Ox axis is formed, as shown in the Figure. Thereby, the calculation area, that corresponds to the 

calculation scheme, can be presented as follows: ∑∑
= =

Ω=Ω
M

m

N

n

mn

1 1
, where M, N are elements of material 

microstructure for the calculation area in the direction 1Ox  and 2Ox . 

When the covering is given, the area occupied by the material can be presented as follows: ercov
' Ω+Ω=Ω . 

Each element of material microstructure for the calculation area (hereinafter the element of the calculation area) 

is connected with the local reference system mnmn xOx 21  ( ),( 21
mnmnmn xxx =  is a point of the mnΩ area), as it is 

shown in Fig.1 and Fig.2. Introducing the notion of the element of the calculation area and bounding elements of the 
calculation area to local reference system allow us to set criteria of the damping of boundary effect in non-
homogeneous material, its microstructure and different conditions of loading and fastening for the calculation area 
being taken into account. 

In the present problem the stress distribution mnσ on the element mnΩ of the calculation area in the local 

reference system mnmn xOx 21 is compared with the stress distribution )1( −σ Nm on the element )1( −Ω Nm in local 

reference system )1(
2

)1(
1

−− NmNm xOx for equal values of the appropriate coordinates. In such a way the estimation of 
the damping of boundary effect for inclusions and matrix is properly provided. 

3.2. The criterion of the damping of boundary effects 
The decay of local and end effects of Saint-Venant is analyzed with functions ( )21 , xxρ  to estimate the decay 

of end effects. The condition of the decay of end effect is that the function achieves a certain value ρ~  on the 

boundary ( )21, xxρΓ  of the end effect zone. This condition takes the following form 

( ) ρ=ρ
ρΓ∈

~, 21 xxx           (3.1) 

The criterion of the decay of end effect is the condition (3.1) satisfied for the function to estimate the damping of 
local effect and end effect of Saint-Venant. In general case the criterion can be presented in the global reference 
system as follows. 

1. For normal stresses σ=σ22  the condition is satisfied with a given accuracy ρ~  

( ) ρ=σσ ~
estx , ( ) ρΓ∈= 21, xxx  ,       (3.2)  

where ( )Hxest ,1σ=σ  are stresses on the edge of the calculation area in the direction of the damping of 
boundary effect. 

2. For normal stresses σ=σ22  the conditions are satisfied with a given accuracy ρ~  

( )( ) ( ) ρ=σ−σσ−σ ~/ estendestx , ( ) ρΓ∈= 21, xxx ,     (3.3) 

where ( ) ( )11 0, xpxend =σ=σ . 

In the present problem the stresses on the microstructure elements of calculation scheme mnΩ  and 
)1( −Ω Nm  are considered. The appropriate comparison takes place in the norm 

C
 .  of the С space 

like ( ) ( )xfxf
xC Ω∈

= max  . The criterion (3.1) can be presented as follows. 

1. For normal stresses  mnmn σ=σ22 the condition is satisfied with a given accuracy ρ~  

( ) ( ) ρ=σσ −− ~)1()1(

C

NmNmmnmn xx , ( ) ρΓ∈
mnxx , 
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mnmnx Ω∈ , )1()1( −− Ω∈ NmNmx , Mm ,1= , ( )1,1 −= Nn  for )1( −= Nmmn xx . (3.4) 

2. For normal stresses σ=σ22   the condition is satisfied with a given accuracy ρ~  

( ) ( ) ρ=σσ −− ~)1()1(

C

NmNmmnmn xx , ( ) ρΓ∈
mnxx , 

mnmnx Ω∈ , )1()1( −− Ω∈ NmNmx , Mm ,1= , ( )1,1 −= Nn  for )1( −= Nmmn xx . (3.5)  
The conditions (3.2) and (3.4) determine the decay of local effects. The conditions (3.3), (3.5) correspond to 

the self-equilibrated load function determine the decay of end effect of Saint-Venant. 
The results of calculation shown in the figures are to be interpreted in terms of (3.4), (3.5). 
3.3. Statement of the problem 
The mixed boundary problem of isotropic theory of elasticity for non-homogeneous bodies is considered in 

the calculation area ∑∑
= =

Ω=Ω
M

i

N

j

ij

1 1
 and in the ercov

' Ω+Ω=Ω  – in case when the covering is present. The 

boundary conditions meet the terms of loading and fastening of material, as shown in Fig.1 and Fig. 2. The 
conditions on the boundary between inclusions and matrix are taken as that of perfect interface. 

3.4. The results of determining the stress-strain state and estimating the damping of boundary effects 
in the matrix with inclusions in the case of periodic piecewise constant load 

The problem is solved by numerical approach based on the net method. The results of calculation are 
presented as spreadsheets corresponding to the discretisation scheme of calculation area and contain information on 
stress fields and estimation of the decay of end effects, as stated by (3.4), (3.5). Using the data given in the 
spreadsheets the results of calculation are presented graphically by Matlab and Excel facilities. The graphics are 
shown in Fig. 3-20. 

The distribution and decay of normal stresses in the direction of 2Ox  axis for fixed coordinate values in the 
location of inclusions and that in the matrix are researched for different values of period of the surface load. 

The sizes of the representative element of material are defined in accordance with the condition (2.1). 
The influence of thin isotropic covering on the distribution and nature of the damping of normal stresses are 

investigated. 
Data for estimating the damping of boundary effect are presented according to the conditions (3.4) and (3.5). 
The calculations are made for the following geometric and mechanical properties of the calculation area: 

100=matrincl EE , 3,0cov =ν=ν=ν ermatrincl , incler EE =cov , incler hh 25,0cov = , bH 5= , 

25.0=inclс . 
Here the following notations are used: 

inclE , matrE , erEcov  – the Young moduli of fiber, matrix and that of covering, respectively; 

ermatrincl cov,, ννν  – Poisson’s coefficients of fiber, matrix and that of covering, respectively; 

inclh  – transverse fiber of square section; 

erhcov  – thickness of the covering; 

inclс  – concentration of inclusions; 

b , H  are sizes of the representative element of material in the direction of 1Ox  and 2Ox , respectively. 
3.4.1 The distribution of normal stresses in the matrix with inclusions 
The distribution of normal stresses in the matrix with inclusions for the calculation areas with different 

number of elements of the calculation area mnΩ , Mm ,1= , Nn ,1= : 2=M , 6=N ; 3=M , 

11=N ; 4=M , 16=N ; 5=M , 21=N ; 6=M , 26=N  is presented graphically in the Fig.3-7. 
The number of elements in the direction of 1Ox axis is defined by a period of the surface load. The number of 

elements in the direction of 2Ox  axis is determined based on the condition of stress state for value n  increasing. 
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There is a stress concentration on the interface between inclusions and matrix in the direction of 2Ox  for 

elements n1Ω and MnΩ  (the load is applied to inclusions of elements 11Ω  and 1MΩ ). The number of elements of 
the calculation area 1  >êèín , for which the coefficient of stress intensity pкин σ= exceeds 1, depends on the 

period of load (that is on the value M ). Assuming such elements to form a stress concentration area, the results of 
calculation can be written as follows:  
Table 1 

M  1  >кинn  est  кинn  maxкин ( )1=n  estкин   max  
2 6 3 2.6 2.2 
3 11 6 2.7 1.1 
4 2 9 2.7 0.75 
5 2 11 2.7 0.55 
6 2 12 2.7 0.4 
 

In the Table 1 est  кинn  is the number of elements of the calculation area, within which is the value êèí is 

determined, maxêèí  is the maximum value of кин , which is reached on the elements 11Ω and 1MΩ , 

estкин   max  is the maximum value on the element of the calculation area with determined stress state. 
As it follows from the results presented, the stress concentration decreases with removing from the line of 

applying the load and gains a determined nature. The stress concentration area, for which the coefficient of stress 
intensity exceeds 1, depends on the period of load. 

3.4.2 The estimation of the damping of normal stresses in matrix with inclusions according to the 
conditions (3.4), (3.5) 

Fig. 8-12 show the distribution of estimation function of the decay of stresses 

( )21, xxρ = ( ) ( ))1()1( −−σσ NmNmmnmn xx , mnmnx Ω∈ , )1()1( −− Ω∈ NmNmx , Mm ,1= ,

( )1,1 −= Nn  for )1( −= Nmmn xx . 
In Fig. 13-18 are presented the distribution of estimation function of the decay of stresses 

( )21, xxρ = ( ) ( )[ ] ( ) ( )[ ])1()1(1
1

1)1()1( 0, −−−− σ−σσ−σ NmNmmmNmNmmnmn xxxx , mnmnx Ω∈ , 
)1()1( −− Ω∈ NmNmx , Mm ,1= , ( )1,1 −= Nn  for )1( −= Nmmn xx . 

As it follows from the results obtained, the extent max
ρλ  of the end effect zone, determined with accuracy of 

%1=ρ , is found within b6.11.1 ÷  in the location of inclusions and within b5.11÷  in the matrix. With 

increasing the period of the surface load b  (i. e. increasing value M ) the value of b/max
ρλ  changes non-

monotonously going through the maximum at 3=M , and then receives the determined value at 6=M . The 
value of M  determines the size of the representative element of the material in the direction of the 1Ox  axis. 

Using the condition (3.5) for estimation of the decay of end effect zone, which corresponds to a self-
equilibrated load function, results in higher values of the extent of end effect zone, than in case of the condition (3.4). 

3.4.3. The distribution of normal stresses in matrix with inclusions when the covering is present 
In. Fig. 18-20 are presented the graphs of distribution of normal stresses in matrix with inclusions for the 

calculation areas with different number of elements of the calculation area mnΩ , Mm ,1= , Nn ,1= : 

2=M , 6=N ; 4=M , 16=N ; 6=M , 26=N . The number of elements in the direction of the 

1Ox  axis is determined by the period of surface load. The number of elements in the direction of the 2Ox axis is 
determined after calculation procedure based on the condition of determined stress state when n  is increasing.  
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There is a stress concentration on the interface between inclusions and matrix in the direction of 2Ox  axis 

for elements n1Ω  and MnΩ  (the load is applied to inclusions of the elements 11Ω  and 1MΩ ), as well as at the 
angular points of the interface between inclusions and covering. The number of elements 1  >êèín  of the calculation 

area, for which the coefficient of stress intensity pêèí σ=  exceeds 1, depends on the period of load (that is on 

the value M ). Assuming such elements to form a stress concentration area, the results of calculation can be written 
as follows.  
Table 2 

M  1  >кинn  est  кинn  maxкин ( )1=n  cover  maxкин ( )1=n  estкин   max  
2 6 2 2.45 - 2.2 
4 2 8 1.9 5 0.75 
6 1-2  12 2.0 5.5 0.4 

In the Table 2 cover  maxкин  – the maximum value of кин , which is reached on the elements 11Ω  and 1MΩ , 
and on the interface between inclusions and covering. 

As it follows from the results obtained, the stress concentration decreases with removing from the line of load 
application and gains determined nature. The stress concentration area, for which the coefficient of stress intensity 

pкин σ=  exceeds 1, depends on the period of load. 
The presence of covering results in the following differences when compared with matrix without covering: 
– the stress concentration area decreases, i.e. so does the number of elements of the calculation area in the 

direction of 2Ox  axis, for which the coefficient of stress intensity pкин σ=  exceeds 1; 

– the number of elements of the calculation area est  кинn , within which there is a determined value of кин , 
decreases; 

– the value of maxкин decreases, which is reached on the elements 11Ω and 1MΩ ; 
– the presence of covering results in a new stress concentration area on the interface between inclusions and 

covering; 
– the stress concentration on the interface between inclusions and covering reveals itself when there are 

unloaded inclusions along the 1Ox  axis ( 3≥M ) (at 2=M  such area is absent). 
 

Conclusions: 

1. The maximum extent max
ρλ  of the end effect zone in the calculation area considered is defined with the 

accuracy %1=ρ  and takes the value of b7.1  in the location of inclusions and that of b6.1  in the matrix. 

2. When the covering is present, the maximum extent max
ρλ  of end effect zone in the calculation area 

considered is defined with the accuracy of %1=ρ  and takes the value of b65.1  in the location of inclusions and 

that of b5.1  in the matrix. 
3. With the period of surface load b  being increased (that is the number of inclusions M  in the direction of 

2Ox  axis is increased), b/max
ρλ  is non-monotonously reaching its determined value when 5=M , which 

corresponds to the volume of representative element in the direction of 1Ox  axis. The volume of representative 

element in the direction of 2Ox axis is b3 , which corresponds to 15=N . 

4. The non-monotonous changing of value b/max
ρλ  points out that the structure anisotropy of the material 

reveals itself to the whole extent when 3=M . For higher values of M  non-homogeneous material can be dealt 
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with as microscopically isotropic one. The extent max
%1λ  of end effect zone for this material is b4.1 . When the 

covering is present, this value is that of b3.1 . 
5. There is stress concentration on the interface between inclusions and matrix in the direction of 2Ox  axis 

when 1=m  and Mm =  . The highest values of êèí  are found on the elements 11Ω  and 1MΩ  
(corresponding to the appropriate loaded inclusions. 

6. The presence of thin isotropic covering sets a “blocking” to local and end effects: 
- it shrinks the area of inclusion concentrations, for which pêèí σ=  exceeds 1 and the value of кин  on 

the interface between inclusion and matrix in the direction of the 2Ox axis. 
- it shrinks the maximum extent of edge effect zone . 
7. When the covering is present, there is stress concentration located on the interface between inclusion and 

covering, that reveals itself in case there are unloaded inclusions ( 3≥M ) along the 1Ox  axis in the calculation 
area. 

8. The non-monotonous nature of the correlations revealed and newly found properties in distributing stress 
fields can be particularly connected with unloaded inclusions ( 3≥M ) along the 1Ox  axis in the calculation area 
and redistributing surface stresses on these inclusions. 

9. The representative element of material obtained in the calculation procedure determines the fact that the 
further investigation of elastic behavior of non-homogeneous material goes from the micromechanical level into 
macro-mechanical one. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. The statistical moments of stress concentration factors in continuum estimation 
 
The statistical moments of stress concentration factors in the random structure fibrous composite (2D) have been 
evaluated from the numerical experiments on the cell model (referred also sometimes as a quasi-random or 
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generalized periodic structure model) being a periodicity unit cell with a number of inclusions. The relevant 
numerical code has been developed and a wide series of numerical experiments has been performed with 50 to 100 
randomly placed inclusions per cell and statistically meaningful results were obtained for the statistical moments of 
stress concentration factors in phases and interfaces of a random structure fibrous composite. They include, in 
particular, the second moment of stress playing a fundamental role in a wide class of non-linear elasticity problems, 
damage initiation, etc. 
 
The developed earlier numerical (finite element) solution for a “solid with a coated high-aspect ratio inclusion” 
model has been applied to evaluate the stress concentrator factors and other relevant local and averaged tensors 
enetering the general theory of the Multiparticle Effective Field Method. The special emphasis was made on the 
problem of the continuum estimation of effective thermoelastic properties of nanocomposites. 
 
The Chapter 2 of the Final Report, containing the detailed description of the. approach proposed and implemented in 
the frame work of the current project and results obtained are given in full in the appropriate annexes attached  
(v. P-110_Annex2.1.pdf, P-110_Annex2.2.pdf, P-110_Annex2.3.pdf, P-110_Annex2.4.pdf and P-
110_Annex2.5.pdf). 
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3. Boundary 3D element analysis in the continuum estimation of effective thermoelastic properties of 

nanocomposites   

The investigations were elaborated in the complete correspondence with coordinated and authorized Plan of Work, 
within the framework of following problems and subtasks of the Project: 

 
• boundary integral formulation of 3-D elastostatic multiple inclusion problems; 
• elaboration of boundary element algorithms for 3-D elastostatic problems on single inclusion in inhomogeneous 

field; 
• examination of accuracy and efficiency of boundary integral equations (BIEM) – boundary element (BEM) 

method for 3D single inclusion problems; 
• micromechanical BIEM–BEM elastic field analysis of 3D partially-homogeneous solids; 
• estimation of 3-D inhomogeneous stress fields inside inclusions of complex shapes; 
• determination of averaged stresses inside inclusions of complex shapes in 3D elastic matrix; 
• 3D macromechanical homohenization analysis of particulate composite materials; 
• effective stress concentration in 3D particulate composite materials. 

 
 
By using the general reciprocity principles, superposition principles and fundamental solutions, the boundary integral 
representations of static displacement and stress components in an elastic composite solid consisting of 3-D infinite 
remotely loaded matrix with multiple inclusions (volumetric, thin-walled and crack-like) of complex geometry and 
arbitrary rigidity are constructed. To define the densities of involved potentials the systems of boundary integral 
equations with Newtonian potential kernels are obtained by satisfaction the contact conditions at the interfaces. The 
subtraction technique is applied to construct the regular analogues of equations. In addition, the treatments of 
hypersingular, strong and weakly singular integrals are given, also the regularizing integrals are evaluated 
analytically. The boundary element algorithm for numerical solution of deduced integral equations is developed. It 
bases on both the introduction of quadrilateral (triangular) isoparametric boundary elements on the solid interface 
and the approximation of unknown functions by the interpolation polynomials within constructed elements. The 
collocation technique is proposed for obtaining the discrete analogues as systems of linear algebraic equations 
relative to the interfacial quantities (both displacements and tractions or their jumps) at the nodal points. The 
software codes (in FORTRAN) are created for implementation of the above algorithm. Two approaches are used for 
examination of developed numerical tool on accuracy and efficiency: first of them rests on the comparison of actual 
quantities calculated by the BIEM–BEM with those available in the literature for specific inclusion configurations 
and disturbing fields; the second one bases on the posterior estimation of the numerical results after implementation 
of the alternative treatments of involved singular integrals, approximations of unknown functions and boundary 
element meshes. Actual 3D elastostatic problems for composite solid formed by infinite elastic matrix and perfectly 
bonded volumetric elastic inclusion of complex shape are brought to numerical results by BIEM-BEM. As an 
example, the inclusion of the shape of finite cylinder with smoothed edges is considered. The interfacial quantities 
(both displacements and tractions) are estimated from the discretized BIE with six types of the right parts, that 
characterize the displacement main field due to the remote unit tensile and shear loadings in three perpendicular 
X,Y,Z directions.  

Then developed BIEM–BEM methodology is applied to the definition of 3-D inhomogeneous displacement 
and stress fields inside volumetric inclusions of complex shapes in an infinite elastic matrix in the general case of 
loading. With this purpose the integral representation formulas connecting the actual quantities with the contact 
displacements and tractions at interfaces (solutions of the BIE) are exploited. The discrete analogues of these 
relations are constructed by the implementation of the standard Gaussian quadratures to deal with regular integrals as 
well as subdivision technique to deal with nearly-singular integrals, which occur when the field point is very close to 
but still off the surface of integration. As a numerical example, the inclusion with smoothed edges is considered. The 
displacements and stresses as function of the position vector of inclusion internal point are estimated for the six types 
of loadings, namely the remote unit tensile and shear loadings in three perpendicular X,Y,Z-directions. Different 
relations between the elastic modulus of the solid constituents and two shape parameters (first parameter describes 
the relation between the height and radius of the cylinder cross-section, in other words the inclusion aspect ratio, the 
second one – the degree of rounding of inclusion’s edges) are involved in the analysis. In addition, the well-known 
situation of spherical inclusion (correlation hole) is taken into account as particular case, which has the solution with 
the analytical counterpart. The technique of stress averaging includes meshing of inclusion domain by the volumetric 
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elements and constant approximation of all stress components within the introduced elements (then the stress values 
in the fixed element are equal to the stresses at the centroid of this element). As an output of the proposed technique, 
the six-rank tensors with the stress components or corresponding strain components are obtained under different 
geometric and mechanical parameters of the finite cylinder shape inclusion. Also the analogous tensors for the 
inclusion of the surrounding sphere shape (correlation hole) are evaluated and compared with the known analytical 
counterparts. 

By the multiparticle effective field method in conjunction with the obtained boundary element solutions of 
3D one-particle problem for the uniform tensile and shear loading as well as uniform fictitious eigenstrains 
conditions, the effective elastic properties of random structure composites for arbitrary inclusion shape are estimated. 
The influence of the nonspherical shape of inclusions (on the example of finite cylinder with the smooth ends) on the 
effective elastic moduli of a composite material and statistical averages of the stresses in the inclusions is 
investigated. As 3D object of continuum analysis, a linearly elastic medium of isotropic constituents, which consists 
of a homogeneous matrix containing a statistically homogeneous random set of inclusions of any shape, is 
considered. The ensemble averaging is replaced by volume averaging for the random quantities description in such 
composite structure. The formulas for the 6×6 effective compliance tensor and 1×6 effective stress tensor are 
exploited, which take into account the “quasi-cristalline” approximation of the inclusion interactions. The elaborated 
numerical scheme is implemented for the homohenization analysis of composite with the cylinder shape inclusions 
with the smoothed ends and aligned orientation. The dependences of the effective elastic moduli versus the 
concentration of inhomogeneities are constructed and studied from the point of view of the reinforcing effects. The 
distribution of effective stresses along both the cross-section and axis of inclusion of limit fiber shape is studied for 
different external loadings of composite, the relations between the elastic moduli of its constituents, the inclusion 
aspect ratios, as well as the dilute and nondilute concentration of inhomogeneities. The points inside the inclusion 
with the maximal effective stresses are revealed and interpreted as the stress concentration zones. 

The BIEM-BEM strategy is extended on the 3D multiple thin-walled inclusion problem. The effective 
boundary conditions (the jumps of displacements and interfacial stresses across the inhomogeneities, depending on 
their rigidity) in the inclusion domains are suggested. The problem is reduced to the boundary integral equations of 
second kind relative these jumps. The stable numerical solution for a wide spectrum of stiff characteristics of the 
composite constituents and profiles of thin-walled inhomogeneities is given. The relations for the renewing of the 
stresses inside the inclusions are deduced. The numerical results for the limiting cases of interacting stiff inclusions 
and crack-like defects are obtained. The reinforcing properties of dispersed phase are estimated by comparing the 
peak values of stress intensity factors in the crack vicinity in the cases of presence and absence of neighboring 
inclusion under the same disturbances of the solid. Also within this Project the attempt to extend BIEM-BEM to the 
similar dynamic problems is made. 

The above investigations open the possibilities for study of both static and dynamic micro-macromechanical 
properties of 3D particulate composites damaged by the inner and interfacial cracks as well as manifold originated 
interfacial imperfectnesses (due to the presence of partial separation, interface coated layers, slipping, adhesion etc.) 
simulated by the spring-like contact conditions between the solid constituents.  

 
Within this Project the following papers are prepared: 

1. Mykhas’kiv V.V., Kunets Ya.I. and Mishchenko V.O. Stresses in a three-dimensional body with thin compliant 

inclusion behind the front of pulsed waves // Materials Science.- 2003.- 39, No. 3.- P. 377-384. 

2. Mykhas’kiv V.V. Transient response of a plane rigid inclusion to an incident wave in an elastic solid // Wave 

Motion. – 2005.- 41, No 2.- P. 133-144. 

3. Mykhas’kiv V.V. and Kalyniak O.I. Nonstationary disturbances of a 3-D elastic matrix with a rigid disk 

inclusion // Physicochemical Mechanics of Materials.- 2005.- 41, No. 2.- P. 7-15 (in Ukrainian). 

4. Mykhas’kiv V.V. and Stepanyuk O.I. BIE method for 3D static problems of rigid disc-inclusion and crack 

interaction in elastic matrix // Computer Modeling in Engineering & Sciences (CMES) (accepted). 

5. Mykhas’kiv V.V. and Stasyuk B.M.  Solution of 3D elastostatic problems on the loading transfer in a solid with 

inclusion of nonclassical shape by boundary element method // Int. Applied Mechanics (in Russian, accepted). 
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6. Buryachenko V.A. and Mykhas’kiv V.V. 3D boundary element analysis in the continuum estimation of effective 

thermoelastic properties of nanocomposites // (in preparation).  
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3.1 Boundary Integral Formulation and Solution of 3D Problems for Volumetric Inclusion in Inhomogeneous 
Field  

 
The 3-D elastostatic problem for remotely loaded infinite matrix (specified by the domain MΩ , shear 

modulus Mµ  and Poisson’s ratio Mν ) with a perfectly bonded inclusion (specified by the domain IΩ , shear 

modulus Iµ  and Poisson’s ratio Iν ) along the surface S  with outward normal 1 2 3( , , )n n nn  (Fig. 1) is solved by 
BIEM-BEM. 

 
 
  

          
Fig. 1 

 
The inhomogeneous main field due to the outer loading is described by the known distribution of 

displacement ( )0 0 0 0
1 2 3, ,u u uu  and corresponding stress 0 ( , 1,2,3)ij i jσ =  components. With this purpose the 

boundary integral representations of displacement components in the matrix (solutions of external problem, with 
upper index “M”) and in the inclusion (solutions of internal problem, with upper index “I”) in terms of interfacial 
quantities are constructed via Betty-Rayleigh formulae as: 
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where the unknown densities ( )ju y , ( )jp y  characterize the displacements and tractions at the interface 

respectively (from the perfect contact conditions they are continuous on S ), first ( , )i jU x y  and second ( , )i jT x y  

fundamental elastostatic solutions for the material “I” or “M” can be written in the following form 
 

{ } ( ) { } { }
{ }

3

( ) ( )1, 3 4
16 (1 )

I I
i j i i j jM M

i j I I
M M

x y x y
U

δ
ν

πµ ν

⎡ ⎤− −⎛ ⎞
= − +⎢ ⎥⎜ ⎟ − −⎢ ⎥⎝ ⎠⎣ ⎦−

x y
x y x y , 

3,1, =ji , 

{ } ( ) { }
{ }

2
1 1 ( ), ( ) 1 2

8 ( 1 )

I I
M Mk k

i j k i jI
M

x yT n ν δ
π ν

⎧ ⎡⎛ ⎞−⎪= − +⎨ ⎢⎜ ⎟−− ⎝ ⎠⎪ ⎣⎩−
x y y

x yx y  (2) 

{ }
2

( )( ) ( )( )3 1 2 ( ) ( )
I

i i j j j jM i i
j i

x y x y x yx y n nν
⎤ ⎫⎡ ⎤− − −⎛ ⎞ − ⎪+ − − −⎥ ⎬⎢ ⎥⎜ ⎟ − −− ⎪⎥ ⎝ ⎠ ⎣ ⎦⎭⎦

y y
x y x yx y .   

 
Satisfying by the integral representations (1) the contact conditions  
 

lim ( ) lim ( ) ( ),I M
i i iS S

u u u S
→ →

= = ∈
x x

x x x x     (3) 

 
and taking into account the boundary properties of involved potentials yield the system of six boundary integral 
equations relative to the functions ( ), ( ) ( 1,2,3)j ju p j =y y  in the singular form: 

 

0

1 ( ) ( , ) ( ) ( , ) ( ) 0,
2
1 ( ) ( , ) ( ) ( , ) ( ) ( ),
2

, 1, 2,3.

I I
i i j j i j j

S S

M M
i i j j y i j j i

S S

u T u dS U p dS

u T u dS U p dS u

S i

+ − =

− + =

∈ =

∫∫ ∫∫

∫∫ ∫∫

y y

y

x x y y x y y

x x y y x y y x

x

 (4) 

 
Then the subtraction technique is applied to construct the regular analogues of integral equations (4). After 

considering the exact values of Gauss type integrals we obtain the following six boundary integral equations with 
only polar peculiarities (with the order 1r− ) in the kernels, which are the most appropriate for the numerical solution: 
 

( ) ( ) ( , ) ( , ) ( ) 0I I
j j i j i j j

S S

u u T dS U p dS⎡ ⎤− − =⎣ ⎦∫∫ ∫∫y yy x x y x y y ,   

0( ) ( ) ( ) ( , ) ( ) ( , ) ( )M M
i j j i j j i j i

S S

u u u T dS p U dS u⎡ ⎤− − + =⎣ ⎦∫∫ ∫∫y yx y x x y y x y x ,      (5) 

1,2,3, .i S= ∈x         
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Also the boundary integral formulation is extended to the analogous composite solid with the constituents specified 

by equal Poisson’s ratios, but different shear modulus. Then the relations take place 

,I I M M I M
i j i j i j i j i jU U T T Tµ µ= = = . This model is interesting because of the division of the system of six 

equations (4) or (5) into two independent subsystems of equations of second and first kind, namely in regular form: 

 

( ) 0( ) ( , ) ( ) ( ) ( ), 1,2,3,M B M M
i i j j j i

S

u T u u dS u iµ µ µ µ⎡ ⎤+ − − = =⎣ ⎦∫∫ yx x y y y x     

(6) 

( , ) ( ) ( ) ( ) ( , ) , 1,2,3.I
i j j j j i j

S S

U p dS u u T dS i⎡ ⎤= − =⎣ ⎦∫∫ ∫∫y yx y y y x x y  

 
Mentioned above circumstance causes the essential economy of computer resources both in terms of CPU 

time and memory. 
Analytical developments are completed by the integral representations for the stresses both inside inclusion 

and matrix in terms of solutions of the obtained boundary integral equations. They can be written as  
 

( ) ( , ) ( ) ( , ) ( ) , , , 1,2,3,I I I I
i j i j k k i j k k

S S

x D p dS S u dS i jσ = − ∈Ω =∫∫ ∫∫y yx y y x y y x

, 

( ) ( )0 ( , ) ( ) ( , ) ( )M M M
i j i j i j k k i j k k

S S

D p dS S u dSσ σ= − +∫∫ ∫∫y yx x x y y x y y , (7) 

, , 1,2,3.M i j∈Ω =x  
 
Here the kernels are defined from the relations: 
 

{ }
{ }

{ }
2

1 1( , ) (1 2 )
8 (1 )

I I
j jM M i i

i j k j k k iI
M

x yx yD ν δ δ
π ν

⎡ ⎛ −−
= − − + −⎢ ⎜− − −⎢ ⎝⎣−

x y
x y x y x y  

3

( ) ( ) ( )
3 i i j j k kk k

i j

x y x y x yx y δ
⎤⎞ − − −−

− + ⎥⎟− − ⎥⎠ ⎦x y x y , 

{ } { }
{ }

{ }
3

1( , ) 3 ( ) (1 2 )
4 (1 )

I
MI I

M Ml l k k
i j k l i jI

M

x y x yS nµ ν δ
π ν

⎧ ⎡− −⎪= − +⎨ ⎢− − −⎪ ⎣⎩−
x y y

x y x y x y

 (8) 



STCU                   PROJECT P110 - FINAL REPORT                                    FF PAGE 68  

         
8/11/2005  

68 
 

{ }
3

( ) ( ) ( )
5

I
j j i i j j k kM i i

j k i k

x y x y x y x yx yν δ δ
⎤⎛ ⎞− − − −−

+ + − +⎥⎜ ⎟− − − ⎥⎝ ⎠ ⎦x y x y x y  

{ } { } { }
2 2

( ) ( ) ( ) ( )3 ( ) ( ) (1 2 ) ( )
I I I

j j k kM M Mi i k k
i j k

x y x y x y x yn n nν ν ν
⎡ − − − −

+ + + − ×⎢
− −⎢⎣

y y y
x y x y

 

{ } { }
2

( ) ( )
(1 2 ) ( ) ( ) (1 4 ) ( )

I I
i i j j M M

j k i i k j i j k
x y x y

n n nν δ δ ν δ
⎤− − ⎫

⎡ ⎤× + − + − −⎥ ⎬⎣ ⎦− ⎥ ⎭⎦
y y y

x y  

 
The boundary element algorithm for numerical solution of obtained integral equations is developed. It bases 

on both the introduction of eight-node quadrilateral and six-node triangular isoparametric boundary elements 
( 1,2,..., )qS q Q=  on the solid interface. Then the global coordinates for the point q qS∈x  are expressed by 

means of coordinates of nodal points as:  
i) for the quadrilateral element 

( )
8

1 2
1

, , 1,2,3,
q

n
iq iqnS

n
x x N iξ ξ

=

= =∑  

 ( ) ( )( )( )1
1 2 1 2 1 2

1, 1 1 1
4

N ξ ξ ξ ξ ξ ξ= − − − − − ;       ( ) ( )( )( )2
1 2 1 2 1 2

1, 1 1 1
4

N ξ ξ ξ ξ ξ ξ= + − − − ; 

( ) ( )( )( )3
1 2 1 2 1 2

1, 1 1 1
4

N ξ ξ ξ ξ ξ ξ= + + + − ;  ( ) ( )( )( )4
1 2 1 2 1 2

1, 1 1 1
4

N ξ ξ ξ ξ ξ ξ= − + − + − ;     (9) 

( ) ( )( )5 2
1 2 1 2

1, 1 1
2

N ξ ξ ξ ξ= − − ;  ( ) ( )( )6 2
1 2 2 1

1, 1 1
2

N ξ ξ ξ ξ= − + ; 

( ) ( )( )7 2
1 2 1 2

1, 1 1
2

N ξ ξ ξ ξ= − + ;  ( ) ( )( )8 2
1 2 2 1

1, 1 1
2

N ξ ξ ξ ξ= − − ; 

 
ii) for the triangular element 
 

( )
6

1 2
1

, , 1,2,3,
q

n
iq iqnS

n
x x M iξ ξ

=

= =∑  

( ) ( )( )1
1 2 1 2 1 2

1, 3 3 3
6

M ξ ξ ξ ξ ξ ξ= + + − ; ( ) ( )( )2
1 2 1 2 1 2

1, 3 3 3
6

M ξ ξ ξ ξ ξ ξ= − − + ;   (10) 

( ) ( )3
1 2 2 2

1, 2 3
3

M ξ ξ ξ ξ= − ;  ( ) ( ) ( )4
1 2 1 2 1 2

1, 3 3 3 3
3

M ξ ξ ξ ξ ξ ξ= − − + + − ; 

 ( ) ( )5
1 2 2 1 2

2, 3 3
3

M ξ ξ ξ ξ ξ= − + ;  ( ) ( )6
1 2 2 1 2

2, 3 3
3

M ξ ξ ξ ξ ξ= − − + . 

 
Following approximation of unknown functions by the interpolation polynomials within constructed 

elements are foreseen: 
i) on the quadrilateral element 
 

( ) ( ) ( ) ( ) ( ) ( )
8 8

1 2 1 2
1 1

, , , , 1,2,3;
q q

n n
i i qn i i qnS S

n n
u u N p p N iξ ξ ξ ξ

= =

= = =∑ ∑x x x x        (11) 
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ii) on the triangular element 
 

( ) ( ) ( ) ( ) ( ) ( )
6 6

1 2 1 2
1 1

, , , , 1,2,3.
q q

n n
i i qn i i qnS S

n n
u u M p p M iξ ξ ξ ξ

= =

= = =∑ ∑x x x x         (12) 

The collocation technique is proposed for obtaining the discrete analogues of boundary integral equations as 
systems of linear algebraic equations relative to the interfacial quantities (both displacements and tractions) at the 
nodal points. The stability of proposed BIEM-BEM algorithm is provided by consideration of numerical properties of 
the matrices of discrete analogues. The standard Gaussian schemes of integration over nonsingular elements (under 
determination of nondiagonal coefficients in the matrix) are exploited. Special adaptive methodology is implemented 
for the correct evaluation of the singular integrals, which represent the diagonal coefficients in the matrixes. It 
foresees using the triangular polar coordinates to reduce the order of singularity of the singular elements by one 
degree and to carry out the integration over the mappings (13) of the singular elements onto plane squares (Fig. 2). 

 

(0,0) (1,0)

(0,1)

η1

η2

(1,1)

a2

a1 (singular point)

ξ2

ξ1

a3

 
Fig. 2 

 
( ) ( )1 1 1 2 2 1 2 31 1η η η ηη= − + − +ξ a a a      (13) 

 
This strategy results in good numerical approximations of singular integrals existing in the Cauchy principal 

value sense and converts weakly singular integrals into integrals over smooth functions. Besides, both the 
interpolation polynomials of different orders for the interfacial quantities approximations (as example, first order 
approximations for the traction functions and second order approximations for the displacement function) and 
boundary elements of different sizes are involved in the numerical analysis. 

The software codes (in FORTRAN) are generated for implementation of the above algorithm. In 
consequence, the 3D elastostatic problems for composite solid formed by infinite elastic matrix and perfectly bonded 
volumetric elastic inclusion of shape of finite cylinder with smoothed edges are brought to numerical results. Fig. 1 is 
a representation of the inclusion boundary described in the cylindrical coordinate system and in the half-space 

0z ≥ by the surface ( 2H  is the inclusion height, a  is the radius of inclusion cross-section, R  is the radius of 
rounding of inclusion’s edges): 
 

( ) ( )2 2 2

, when ;
, when ;

, when , ,

r a z H R
z H r a R

r a R z H R R z H R r a R

⎧ = ≤ −
⎪⎪ = ≤ −⎨
⎪

− + + − + = > − > −⎪⎩

(14) 

 
which reduces to a sphere and cylinder with smoothed edges in the limiting cases H a R= =  and R a= , 
respectively. The mesh for this inclusion configuration is shown in the Fig. 1. 

The actual interfacial quantities (both displacements and tractions) are estimated from the discretized BIE 
with six types of the right parts, that characterize the displacement main field due to the remote unit tensile and shear 
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loadings in three perpendicular X,Y,Z directions. Different relations between the elastic modulus of the solid 
constituents and two shape parameters (first parameter describes the relation between the height and radius of the 
cylinder cross-section, in other words the inclusion aspect ratio, the second one – the degree of rounding of 
inclusion’s edges) are involved in the analysis. Obtained results allow us to calculate the inhomogeneous stress field 
at any point inside the inclusion. As consequence, we obtain six-rank tensors, which are necessary at including the 
homogenization ideas and hypotheses for study of the influence of inclusion shape on the statistical averages of 
effective stresses and stresses in the inclusions, when 3D matrix containing statistically homogeneous set of 
inclusions of nonclassical shapes is considered. 

The procedures for accuracy-stability verification of the proposed method are foreseen in the computer 
programs through the possibilities to change the boundary element sizes and to proceed to the simplest solutions, 
which are obtained analytically. As a test of accuracy of the proposed BIEM-BEM technique, the single spherical 
inclusion in an infinite elastic matrix subjected to homogeneous stress 0σ  at infinity is considered. The obtained 
BIEM-BEM results for the stresses in inclusion are compared with the Eshelby’s analytical solutions for different 
relations between the inclusion-matrix elastic modulus (Tables 1-4). In all cases the dependences of errors versus 
discretization parameter of numerical scheme are established. On this base the optimal meshes and approximations 
are defined (in our case 182 boundary elements are used, quadratic approximation for the displacement and linear 
approximation for the tractions are employed). 
 

Case I: 0,45M Iν ν= = ;     0,1
M M

I I
E
E

µ
µ

= =  

Analytical solution 
 

 0
11σ σ  0

22σ σ  0
33σ σ  0

12σ σ  0
13σ σ  0

23σ σ  

Tension along 1xO  1.758 -0.318 -0.318 0 0 0 

Tension along 2O x  -0.318 1.758 -0.318 0 0 0 

Tension along 3O x  -0.318 -0.318 1.758 0 0 0 

Shear in plane 1 2x O x  0 0 0 2.075 0 0 

Shear in plane 1 3x O x  0 0 0 0 2.075 0 

Shear in plane 2 3x O x  0 0 0 0 0 2.075 

Table 1 
 
 

Numerical solution 
 

 0
11σ σ  0

22σ σ  0
33σ σ  0

12σ σ  0
13σ σ  0

23σ σ  

Tension along 1xO  1.769 -0.310 -0.310 0 0 0 

Tension along 2O x  -0.310 1.769 -0.310 0 0 0 

Tension along 3O x  -0.310 -0.310 1.769 0 0 0 

Shear in plane 1 2x O x  0 0 0 2.156 0 0 

Shear in plane 1 3x O x  0 0 0 0 2.156 0 

Shear in plane 2 3x O x  0 0 0 0 0 2.156 

Table 2 
 

Case II: 0,45M Iν ν= = ;     0,01
M M

I I
E
E

µ
µ

= =  
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Analytical solution 
 

 0
11σ σ  0

22σ σ  0
33σ σ  0

12σ σ  0
13σ σ  0

23σ σ  

Tension along 1xO  1.929 -0.396 -0.396 0 0 0 

Tension along 2O x  -0.396 1.929 -0.396 0 0 0 

Tension along 3O x  -0.396 -0.396 1.929 0 0 0 

Shear in plane 1 2x O x  0 0 0 2.326 0 0 

Shear in plane 1 3x O x  0 0 0 0 2.326 0 

Shear in plane 2 3x O x  0 0 0 0 0 2.326 

Table 3 
 

Numerical solution 
 

 0
11σ σ  0

22σ σ  0
33σ σ  0

12σ σ  0
13σ σ  0

23σ σ  

Tension along 1xO  2.103 -0.362 -0.362 0 0 0 

Tension along 2O x  -0.362 2.103 -0.362 0 0 0 

Tension along 3O x  -0.362 -0.362 2.103 0 0 0 

Shear in plane 1 2x O x  0 0 0 2.368 0 0 

Shear in plane 1 3x O x  0 0 0 0 2.368 0 

Shear in plane 2 3x O x  0 0 0 0 0 2.368 

Table 4 
 

The 3D BIEM-BEM results are very close to the exact test solutions even when a small number of both 
quadrilateral and triangular isoparametric surface elements are employed on the interface (this is the main advantage 
of the BEM over the FEM, in which a large number of finite elements is needed for the analysis), besides, it is 
preferable to use the advanced BIEM-BEM formulations based on the preliminary regularization and adaptive 
procedures. 
On the basis of integral representation formulas (7) and obtained interfacial quantities at the nodal points, six stress 
components inside the inclusion of finite cylinder shape, embedded in elastic matrix, under tensile and shear loading 
are computed. The discrete analogues of these relations are constructed by the implementation of the standard 
Gaussian quadratures to deal with regular integrals as well as subdivision technique to deal with nearly-singular 
integrals, which occur when the field point is very close to but still off the surface of integration. As a numerical 
example, the inclusion with smoothed edges (Fig. 1, R a= ) is considered. The stresses as function of the position 
vector of inclusion internal point are estimated for different relations between the elastic modulus of the solid 
constituents and inclusion aspect ratios. The curves on the Figs. 3-8 show the stress distributions inside the inclusion 
in the plane 3 0x =  under homogeneous tension 0 constσ =  of the matrix along the axis 3Ox : 1 – / 1.0H R = ; 2 

– 1.3H R = ; 3 – 1.5H R = ; 4 – 2.0H R = .  
 

Case I: 0,45M Iν ν= = ;     0,1
M M

I I
E
E

µ
µ

= =  
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Fig. 3 
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Fig. 5 
 

Case II: 0,45M Iν ν= = ;     0,01
M M

I I
E
E

µ
µ

= =  
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Fig. 6 
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Fig. 7 
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Fig. 8 
 

As a very important example, the inclusions of the same shape with high aspect ratios are included in the 
BEM analyses using nonhomogeneous meshes. The curves on the Figs. 9-10 demonstrate the normal stress 

distributions inside the inclusion along the axis 3Ox  ( 1 2 0x x= = ) under homogeneous tension 0σ  of the 

matrix along axis 3Ox  (1 – / 0.01M IE E = ; 2 – / 0.1M IE E = ; 3 – / 10.0M IE E = ). The Fig. 9 correspond 

to the relation / 20H R = , the Fig. 10 correspond to the relation / 100H R = ,  
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Fig. 9 
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3.2 Investigation of Effective Elastic Properties of 3-D Aligned Structure Composites using Boundary 
Element Method 

 
By the multiparticle effective field method in conjunction with the previously obtained boundary element solutions of 
3D one-particle problem for the uniform tensile and shear loading as well as uniform fictitious eigenstrains 
conditions, the effective elastic properties of random structure composites for arbitrary inclusion shape are estimated. 
The influence of the nonspherical shape of inclusions (on the example of finite cylinder with the smooth ends) on the 
effective elastic moduli of a composite material is investigated. The dependences of the effective elastic moduli 
versus the concentration of inhomogeneities are constructed and studied from the point of view of the reinforcing 
effects. The distribution of the statistical averages of the stresses in the fiber-like inclusions is obtained for different 
external loadings of composite, the relations between the elastic moduli of its constituents, the inclusion aspect ratios, 
as well as the dilute and nondilute concentration of inhomogeneities. 

As 3D object of continuum analysis, a linearly elastic medium of isotropic constituents, which consists of a 
homogeneous matrix MΩ containing a statistically homogeneous random set of aligned inclusions 

( 1, 2,.....)i iΩ = of any shapes and concentration c , is considered. Then the ensemble averaging is replaced by 
volume averaging for the random quantities description in such composite structure, namely: 

 

( )1f f d
Ω

= Ω
Ω ∫ xx      (15) 

 
The following formula for the 6×6 effective compliance tensor is exploited, which takes into account the 

“quasi-cristalline” approximation of the inclusion interactions: 
 

11* 0M V
−−Ω⎡ ⎤= + −⎢ ⎥⎣ ⎦

M M R Q ,     (16) 

where *M  is the tensor of the effective elastic moduli of the composite material, MM  and IM  is the tensor of the 
elastic moduli of the matrix material and inclusion material respectively, iΩ = ∪Ω , ( ) ( )iV V=∑x x , iV  is a 

characteristic function of iΩ , 
 

( ) ( ) ( )I M
i i i= Ω −R x M M B x .     (17) 

 
  The estimation of statistical averages of the inhomogeneous stresses iσ in the inclusions bases on the 

relation 
 

( ) ( )
10

ii V
−Ω⎡ ⎤= −⎣ ⎦x B x I Q Rσ σ     (18) 

 
Two tensors are included in the calculation formulas (16) and (18). The tensor iB  corresponds to the 

inhomogeneous stresses inside a single thi inclusion due to six types of loadings of the matrix, namely the remote 
unit tensile and shear loadings in three perpendicular X,Y,Z-directions. Its components are defined by the relations 

 

( ) ( ) 0 0, , when 1, 0 ( ),

, 1, 2,..,6

m i j ki jmB j k

j m

= σ ∈Ω σ = σ = ≠

=

x x x
   (19) 

 
The tensor 0Q  corresponds to the inhomogeneous stresses inside a single inclusion due to six types of 

fictitious unit eigenstrains in the same directions: 
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( ) ( ) 0 0 0, , when 1, 0 ( ),

, 1, 2,..,6

m i j ki jmQ j k

j m

= σ ∈Ω ε = ε = ≠

=

x x x
,   (20) 

 
where 0

iΩ  is the correlation hole domain. In the numerical scheme we use the spherical correlation hole, then 
0 .const=Q  

The previously created computer codes in FORTRAN on the base of boundary element method are applied 
with the purpose of mentioned tensors determination. The accurate estimation of analogous tensors with averaged 
stresses is performed by the optimal selection of nodal field points along the radial and angular coordinates inside the 
inclusion. Then the proposed numerical scheme is implemented for the homohenization analysis of composite with 
the cylinder shape inclusions with the smoothed ends and aligned orientation (Fig. 1, a R= ). Different relations 
between the elastic modulus of the solid constituents and fiber aspect ratios are involved in the study. The effective 
Young’s moduli in the directions along and crosswise the limit fibers as functions of concentration of 
inhomogeneities are computed and compared with the matrix counterpart. The behaviour of the effective stresses, 
when the concentration (both dilute and nondilute) of inclusions changes, is investigated. 

 
 Case I.  

0,45I M= =ν ν ;     0.1
M

I
E
E

=  

 The matrixes of averaged stresses (matrixes B ) inside the single fiber-like inclusion for different aspect 

ratios. 
 

1.0H R =  
 0

11σ σ  0
22σ σ  0

33σ σ  0
12σ σ  0

13σ σ  0
23σ σ  

Tension along 1xO  1.758 -0.318 -0.318 0 0 0 

Tension along 2O x  -0.318 1.758 -0.318 0 0 0 

Tension along 3O x  -0.318 -0.318 1.758 0 0 0 

Shear in plane 1 2x O x  0 0 0 2.075 0 0 

Shear in plane 1 3x O x  0 0 0 0 2.075 0 

Shear in plane 2 3x O x  0 0 0 0 0 2.075 

 
1.3H R =  

 0
11σ σ  0

22σ σ  0
33σ σ  0

12σ σ  0
13σ σ  0

23σ σ  

Tension along 1xO  1.637 -0.308 -0.442 0 0 0 

Tension along 2O x  -0.308 1.637 -0.442 0 0 0 

Tension along 3O x  -0.235 -0.235 2.024 0 0 0 

Shear in plane 1 2x O x  0 0 0 1.944 0 0 

Shear in plane 1 3x O x  0 0 0 0 2.099 0 

Shear in plane 2 3x O x  0 0 0 0 0 2.099 

 
1.5H R =  
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 0
11σ σ  0

22σ σ  0
33σ σ  0

12σ σ  0
13σ σ  0

23σ σ  

Tension along 1xO  1.602 -0.300 -0.527 0 0 0 

Tension along 2O x  -0.300 1.602 -0.527 0 0 0 

Tension along 3O x  -0.209 -0.209 2.216 0 0 0 

Shear in plane 1 2x O x  0 0 0 1.902 0 0 

Shear in plane 1 3x O x  0 0 0 0 2.107 0 

Shear in plane 2 3x O x  0 0 0 0 0 2.107 

 
2.0H R =  

 0
11σ σ  0

22σ σ  0
33σ σ  0

12σ σ  0
13σ σ  0

23σ σ  

Tension along 1xO  1.528 -0.300 -0.742 0 0 0 

Tension along 2O x  -0.300 1.528 -0.742 0 0 0 

Tension along 3O x  -0.165 -0.165 2.681 0 0 0 

Shear in plane 1 2x O x  0 0 0 1.827 0 0 

Shear in plane 1 3x O x  0 0 0 0 2.076 0 

Shear in plane 2 3x O x  0 0 0 0 0 2.076 

 
The matrixes of stresses (matrix 0Q ) inside the spherical correlation hole 
 

0

0.6674 0.2702 0.2702 0.0 0.0 0.0
0.2702 0.6674 0.2702 0.0 0.0 0.0
0.2702 0.2702 0.6674 0.0 0.0 0.0
0.0 0.0 0.0 0.397 0.0 0.0
0.0 0.0 0.0 0.0 0.397 0.0
0.0 0.0 0.0 0.0 0.0 0.397

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Q  

 
 The dependences of the effective Young’s modulus versus the inclusion concentration c  (Figs. 11-12) on 
the base of one particle “quasi-crystalline” approximation: 1 – 1.0H R = ; 2 – 1.3H R = ; 3 – 1.5H R = ; 4 

– 2.0H R = . 
 

0
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E
E*
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Fig. 11 
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Fig. 12 

 
The curves on the Fig. 13 demonstrate the distributions of normal effective stresses inside the inclusion with 

the aspect ratio 2.0H R =  along the axis 3Ox  ( 1 2 0x x= = ) under homogeneous tension 0σ  of the matrix 

along axis 3Ox : 1- 0.0c =  (single inclusion); 2- 0.1c = ; 3 - 0.5c = ; 4 - 0.7c = . 
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Fig. 13 

 
 Case II.  

0,45I M= =ν ν ;     0.01
M

I
E
E

=  

 
 The matrixes of averaged stresses (matrixes B ) inside the single fiber-like inclusion for different aspect 

ratios. 
 

1.0H R =  
 0

11σ σ  0
22σ σ  0

33σ σ  0
12σ σ  0

13σ σ  0
23σ σ  

Tension along 1xO  1.929 -0.402 -0.402 0 0 0 

Tension along 2O x  -0.402 1.929 -0.402 0 0 0 

Tension along 3O x  -0.402 -0.402 1.929 0 0 0 

Shear in plane 1 2x O x  0 0 0 2.326 0 0 

Shear in plane 1 3x O x  0 0 0 0 2.326 0 

Shear in plane 2 3x O x  0 0 0 0 0 2.326 

 
1.3l =  

 0
11σ σ  0

22σ σ  0
33σ σ  0

12σ σ  0
13σ σ  0

23σ σ  

Tension along 1xO  1.764 -0.374 -0.563 0 0 0 

Tension along 2O x  -0.374 1.764 -0.563 0 0 0 

Tension along 3O x  -0.300 -0.300 2.286 0 0 0 

Shear in plane 1 2x O x  0 0 0 2.139 0 0 

Shear in plane 1 3x O x  0 0 0 0 2.366 0 

3x H

33
0

i
σ
σ
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Shear in plane 2 3x O x  0 0 0 0 0 2.366 

 
1.5H R =  

 0
11σ σ  0

22σ σ  0
33σ σ  0

12σ σ  0
13σ σ  0

23σ σ  

Tension along 1xO  1.721 -0.361 -0.687 0 0 0 

Tension along 2O x  -0.361 1.721 -0.687 0 0 0 

Tension along 3O x  -0.272 -0.272 2.560 0 0 0 

Shear in plane 1 2x O x  0 0 0 2.083 0 0 

Shear in plane 1 3x O x  0 0 0 0 2.387 0 

Shear in plane 2 3x O x  0 0 0 0 0 2.387 

 
2.0l =  

 0
11σ σ  0

22σ σ  0
33σ σ  0

12σ σ  0
13σ σ  0

23σ σ  

Tension along 1xO  1.652 -0.349 -1.014 0 0 0 

Tension along 2O x  -0.349 1.652 -1.014 0 0 0 

Tension along 3O x  -0.231 -0.231 3.281 0 0 0 

Shear in plane 1 2x O x  0 0 0 1.931 0 0 

Shear in plane 1 3x O x  0 0 0 0 2.415 0 

Shear in plane 2 3x O x  0 0 0 0 0 2.415 

 
The matrixes of stresses (matrix 0Q ) inside the spherical correlation hole 
 

0

0.6706 0.2736 0.2736 0.0 0.0 0.0
0.2736 0.6706 0.2736 0.0 0.0 0.0
0.2736 0.2736 0.6706 0.0 0.0 0.0
0.0 0.0 0.0 0.3971 0.0 0.0
0.0 0.0 0.0 0.0 0.3971 0.0
0.0 0.0 0.0 0.0 0.0 0.3971

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Q  

 
 The dependences of the effective Young’s modulus versus the inclusion concentration c  (Figs. 14-15) on the 
base of one particle “quasi-crystalline” approximation: 1 – 1.0H R = ; 2 – 1.3H R = ; 3 – 1.5H R = ; 4 – 

2.0H R = . 
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Fig. 14 
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Fig. 15 

 
 
 

The curves on the Fig. 16 demonstrate the distributions of normal effective stresses inside the inclusion with 

the aspect ratio 2.0H R =  along the axis 3Ox  ( 1 2 0x x= = ) under homogeneous tension 0σ  of the matrix 

along axis 3Ox : 1- 0.0c =  (single inclusion); 2- 0.1c = ; 3 - 0.5c = ; 4 - 0.7c = . 
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Fig. 16  
 

The character of monotical increasing the effective elastic moduli, when the concentration (both dilute and 
nondilute) of inclusions increases, is investigated. This dependence is most expressive for the composites with the 
constituents, which have a large contrast relative to the elastic properties. In the domain of nondilute concentration of 
inclusions the essential variation of effective elastic moduli under considered changing of the shape parameter is 
revealed. It is demonstrated, that the predicted isotropic effective moduli of composites with the aligned limited fiber-
like fillers in the direction of fibers are stiffer than the effective elastic moduli of composites with the spherical 
inclusions. An opposite effect is fixed in the perpendicular direction. It is shown, that the stress distributions are 
essentially inhomogeneous along the axis and cross-section of inclusions for any concentration. The comparison of 
the localization places of concentration zones for the different effective stress components is fulfilled. 

 
 
3.3 Micromechanics of 3D Particulate Composites with Crack-Like Damages  

 
Next, the composite material containing arbitrarily located inhomogeneities with limiting geometric 

properties and contrast rigidities – IN stiff disk-shaped inclusions in the plane domains ( ) ( 1,2,..., )n I IS n N=  

and CN crack-like defects in the plane domains ( ) ( 1,2,..., )n C CS n N= – under inhomogeneous outer field 
0 0, ijσu  (Fig. 17) is investigated. 
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Fig. 17 

 
The effective boundary conditions (the linearity of displacement components in the inclusion domains and 

load-free conditions in the crack domains) are suggested, namely: 
 

( )
( )

.,...,,,

,

,,,)(

)()(

)()()()()()(

)()()()(

IInIn

InnInnnIn

In
j

njn
j

In
j

NnS

xxUu

jxUu

21

211

122133

33

=∈

Ω−Ω+=

=Ω−+= −

x

x

x

   (21) 

 

( )( ) ( ) ( )
3 0, 1,2,3, , 1,2, , ,n C n C n C C

j j S n Nσ = = ∈ =x x …  

 
where constants ( ) ( ),n n

j jU Ω  describe the translation and rotation of the n -th inclusion (to simplify the current and 
subsequent mathematical representations we use the local coordinate systems associated with the corresponding 
object (Fig. 17)). 

Then the boundary integral formulation of problems is achieved via the superposition principle, when the 
total field in the matrix is formed from the fields caused by effects of separate disperse objects, in the form 
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0 ( ) ( )

1 1
.

I CN N
k I k C

k k= =

= + +∑ ∑u u u u       (22) 

 
The representations for the functions ( )k Iu , ( )k Cu  in terms of surface integrals are obtained. Finally, we 

can write 
 

( ) ( ) ( )∫∫∫∫
⎢
⎢
⎣

⎡
+

∂

∂
σ∆

∂

∂
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−
−
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Ik
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S
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j
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j xx
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)(
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)( 1
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11
ξ

ξ

ξ
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x
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( ) ( )( ) ( ) ( ) ( ) ( ) ( )
2 3( ) ( )

2 3

, 1,2,3,k k I k k I k I k I
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x x
σ σ
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+∆ + ∆ − =⎥∂ ∂ ⎦
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In the case of thin-walled (disk-shaped) inclusions and cracks the roles of unknown densities play the jumps 

of interfacial stresses and displacements across the inhomogeneities, respectively. Following relations explain the 
physical sense of the densities: 
 

( ) ( ) ( )[ ] ,,,,, )()()()()()( 31
4
1

213213 =ξξσ−ξξσ
π

=σ∆ +− jIkIk
j

IkIk
j

Ikk
j ξ  

( ) ( ) ( )( )
3

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2 3 1 2 30

, , , lim ,
k I

k I k I k I k I k I k I k I
j jx

S x x xξ ξ σ σ±

→±
∈ =ξ  

( ) ( ) ( )[ ] ,,,,, )()()()()()( 31
4
1

2121 =ξξ−ξξ
π

=∆ +− juuu CkCk
j

CkCk
j

Ckk
j ξ    (24) 

( ) ( ) ( ).lim,,, )()()()()()()(
)(

Ck
j

x

CkCk
j

CkCkCkCk xuxxuS
Ck 0

2121
3 ±→

± =∈ξξξ  

 
 The boundary integral equations for these functions are deduced by satisfying the boundary conditions (21). 
So we arrive at the system of 3( )I CN N+  equations, as follows 
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In the first 3 IN  equations, the characteristic part with weakly singularities coincides with the integral 

operator of 3D problem of isolated inclusion in the elastic matrix, the regular kernels ( )kn I
jrR  and ( )kn CI

jrL  describe, 

respectively, the influence of the k th inclusion and k th crack on the n th inclusion. In the remaining 3 CN  
equations, the characteristic part with hypersingularities coincides with the integral operator of 3D problem of 
isolated crack in the elastic matrix, the regular kernels ( )kn C

jrR  and ( )kn IC
jrL  describe, respectively, the influence of 

the k th crack and k th inclusion on the n th crack. In the resulting integral equations these regular kernels are 
obtained in the explicit form, what guarantees their numerical discretization by standard approaches. 

For completeness the 6 IN  equilibrium equations for the inclusions as rigid unities are added to the 
obtained integral equations in the form 
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The behavior of both displacement and stress fields in the vicinity of thin-walled inhomogeneity fronts, 

where stress concentration takes place, is considered exactly by square-root extraction from the functions, which are 
determined. In particular, in the case of circular inhomogeneities with radii ( ) ( ),n I n Ca a  we assume: 
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x x

x …
   (27) 

 
where ( )n

jα , ( )n
jβ  are new smooth unknown functions, which can be approximated with a good accuracy as 

piecewise-constants in the practical calculations. 
This fact finally yields the direct and more accurate definition of fracture parameters. Indeed, it is easily to 

show, that the mixed mode stress intensity factors in the vicinity of n th crack are expressed by the solutions of 
boundary integral equations as 
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III aGK xx xx 212  

 
The approach for the regularization and boundary element discretization of Eqs. (25), (26) rests on the 

lowering of the order of singularity by the integration by parts in conjunction with the application of the mapping 
procedures and using collocation technique. During calculation 176  boundary elements 0C -type are used on each 
inhomogeneity, Poisson’s ratio was chosen as 0.3Mν = . 

For the testing a single stiff circular disk-shaped inclusion in the homogeneous stress field is considered 
(then the exact analytical solution exists). This case is reached in the limit d →∞  and demonstrates excellent 
agreement (less than 0.1%). 

As the example of methodology implementation, the normalized mode I stress intensity factor as function of 
angular coordinate ϕ  of crack front point for the interacting pair stiff disk-shaped inclusion – penny-shaped crack 

under uniaxial homogeneous loading P  is showed (Fig. 18, where I Ca a= ). Reinforcing properties of dispersed 
phase are revealed by comparing the peak values of stress intensity factor in the crack vicinity in the cases of 
presence and absence of neighboring inclusion under the same disturbances of the solid. Also the influence of the 
distance between inhomogeneities on the interaction phenomena is evaluated. Also within this Project the attempt to 
extend such approach concerning thin-walled inclusions to the time-harmonic (Fig. 19, where 0.1C Ia a = ) and 
transient (Fig. 20) cases is made.  
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Fig. 20 

 
 
 

3. Conclusions 
The numerical tool, based on the advanced BIEM-BEM formulations, is developed and applied for the 

solution of three-dimensional elastostatic problems for remotely inhomogeneous loaded matrix with the perfectly 
bonded inclusions. Proposed approach is not sensitive to the geometry of inclusions (both volumetric and thin-walled 
inhomogeneities of complex shapes are involved to the analysis), their physical-mechanical properties and mutual 
localization in the solid, also to the loading conditions. In conjunction with the average schemes of multiparticle 
effective field method (MEFM) it is implemented for the macroanalysis (with obtaining of all necessary effective 
parameters) of composites, which are models by 3D homogeneous matrix containing a statistically homogeneous set 
of aligned fiber-like inclusions.  
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inclusion problems. 
• Elaboration of general scheme for discretization and numerical solution of boundary integral equations 

of 3-D elastostatic problems for an infinite matrix with a single volumetric or thin-walled inclusion. 
Obtaining the discretized relations for computation of the strain-stress state at the inner points of 
matrix and inclusion by means of interfacial quantities (solutions of boundary integral equations). 

• Selection of 3D test inclusion-matrix models with most demonstrative field distributions and 
formulation of particular examples and conditions for verification the numerical results. Creation of 
alternative regularization, conversation and discretization procedures for obtaining key matrices with 
the best numerical properties. 
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• Statement of the actual problems of BIEM–BEM elastic field analysis for 3D partially-homogeneous 
solids with a selection of input and output parameters. Elaboration of the approaches for the optimal 
(from the point of view of CPU time and memory) computational coding of problems. 

• BIEM–BEM analysis of stress field inside volumetric and thin-walled elastic inclusion of nonclassical 
shapes. Elaboration of the approaches for the optimal computational coding of problems. Analysis and 
estimation of obtained numerical results. 

• Implementation of BIEM–BEM strategy for the investigation of the stress fields both in the discrete 
and averaged forms inside the elastic inclusions of nonclassical shapes. Revealing the regularities of 
the stress behaviors and selection of the most demonstrative distributions for presentation of the 
numerical results obtained. 

• Development of general scheme for the homohenization analysis of 3D particulate composite 
materials using boundary element technique. Estimation of the tensors of stresses inside the inclusion 
of complex shape in the discrete and averaged forms. Analysis of the effective elastic moduli of 3D 
composites with the limit fiber-like inclusions. 

• Development of general scheme for the study of the effective stress concentration in 3D particulate 
composite materials using boundary element technique. Analysis of the effective properties of 3D 
composites with the limit fiber-like inclusions. 

Stasyuk B.M.  
• Obtaining regularized boundary integral equations of 3-D elastostatic multiple volumetric inclusion 

problems. 
• Obtaining the discretized boundary integral equations of 3-D elastostatic problems for an infinite 

matrix with inclusion of finite cylinder shape. Creation of software codes directed on the 
determination of interfacial displacements and tractions for this type of inclusion. 

• Testing of BIEM-BEM results for volumetric elastic inclusion and generation on this base the 
improved numerical procedures. 

• Generation and realization of improved numerical procedures and codes within BIEM-BEM for the 
analysis of stress field inside volumetric elastic inclusion of nonclassical shape. 

• Obtaining the discrete relations for the analysis of stress field inside volumetric elastic inclusion of 
nonclassical shape. Calculation of stress components at the internal nodes on the different meshes. 

• Numerical realization of averaging procedures for stresses inside a cylinder shape inclusion. 
Construction and estimation of the six-rank tensors with averaged stresses (strains) as components for 
different geometric and mechanical parameters of the inclusion.  

• Estimation of tensors of inhomogeneous stresses inside the single inclusion of limit cylinder shape due 
to the remote uniform tensile and shear loadings in three perpendicular directions. Obtaining the 
analogous tensors with the volume averaging of stresses. 

• Numerical estimation of effective normal stresses inside the aligned inclusions of limit cylinder shape 
due to the remote uniform tensile and shear loadings in the three perpendicular directions. 

Stepanyuk O.I. 
• Obtaining regularized integral equations of 3-D elastostatic multiple thin-walled inclusion problems. 
• Obtaining the discretized boundary integral equations of 3-D elastostatic problems for an infinite 

matrix with disk-shaped inclusion. Creation of software codes directed on the determination of 
interfacial displacements and tractions for this type of inclusion. 

• Testing of BIEM-BEM results for inclusion with contrast geometrical and mechanical properties and 
generation on this base the improved numerical procedures. 

• Generation and realization of improved numerical procedures and codes within BIEM-BEM for the 
analysis of stress intensity factors near the interacting inclusions with contrast geometrical and 
mechanical properties. 

• Obtaining the discrete relations for the analysis of stress concentration near the interacting inclusions 
with contrast geometrical and mechanical properties. 

• Numerical determination of the stress components inside a cylinder shape inclusion under six types of 
tensile and shear loadings of the matrix. Analysis of these quantities as functions of the field point in 
3D space. 
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• Estimation of tensors of inhomogeneous stresses inside the single inclusion of limit cylinder shape due 
to the uniform fictitious tensile and shear eigenstrains in three perpendicular directions. Obtaining the 
analogous tensors with the volume averaging of stresses. 

• Numerical estimation of effective tangential stresses inside the aligned inclusions of limit cylinder 
shape due to the remote uniform tensile and shear loadings in the three perpendicular directions. 
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4. Solution of the two-dimensional micromechanics problem for the fiber reinforced bounded and unbounded 

solids. Investigation of effective local and nonlocal thermoelastic properties, stress concentration factors, and edge 

effect 

1.1 Theoretical part 

The 2-D problem for a plain domain with inclusions is considered. Generally the problem may be presented in the 

form shown on Fig. 1.1.1 

 

 

 

 

 

 

 

 

 

 

 

                                                         Fig. 1.1.1 

 The general solution of the 2-D problem can be presented by the integral identities of the Somigliano type for 

displacements in the form 

{ } ∫∫ −+−−=
∂ V

ijj
V

ijjijji dVUbdSWuUpu )()(),()()()()( yxxyxxyxxy ,   2,1, =ji     (1.1.1) 

here and bellow we use conventional index notation, summation over any pair of repeated indices is understood. 

Notations: 

)(yiu  are components of the displacements vector in a point y  in the direction  

of the axis ix ; 

)(xjp  are components of the traction vector in a point x  in the direction of the axis jx ; 

)(xjb  are components of the body forces vector in a point x  in the direction of axis jx ; 

2
22

2
11 )()()( yxyxrr −+−== yx,  is the distance between points x  and y ; 

),( 21 xxxx =   is the point to which loading is put in; 

1x

2x  

0

),( yxr

),( 21 yyy

),( 21 xxx

n 

V

V∂
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),( 21 yyyy =   is the point in which we search displacements;     VV ∂∈ \yx, ; 

∪
N

i
ibVV

1=
Γ+∂=∂  where bV∂  is the boundary of the body and iΓ  is the boundary of a inclusion.  

Tractions also can be defined by the formulas of the Somigliano type in the form 

{ } ∫∫ +−=
∂ V

ijj
V

ijiijji dVBbdSCuKpp ),()(,()(),()()( yxxyxxyxxy .              (1.1.2) 

In order to obtain the boundary integral equations (BIE) from the integral representations (1.1.1) and (1.1.2) we have 

to turn out points y  to the boundary V∂ . 

From the integral representation (1.1.1) we obtain BIE of the form 

{ } ∫∫ −+−−=⋅
∂ V

ijj
V

ijjijji dVUbdSWuUpu )()(,()()()()(
2
1 yxxyxxyxxy .        (1.1.3) 

From the integral representation (1.1.2) we obtain BIE of the form 

 { } ∫∫ +−=
∂ V

ijj
V

ijiijji dVKbdSFuKpp ),()(,()(),()()(
2
1 yxxyxxyxxy .             (1.1.4) 

Now the two-dimensional problem under consideration has the dimension 1. 

Integral identities of the Somigliano type for displacements (1.1.1) in matrix form: 

( )
( )

( ) ( )
( ) ( )

( )
( )

( ) ( )
( ) ( )

( )
( )

( ) ( )
( ) ( )

( )
( )∫
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⎦
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⋅⎥
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⎨
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⎦
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−⎥

⎦

⎤
⎢
⎣

⎡
⋅⎥
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⎣
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UU
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dS
u
u

WW
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p
p

UU
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u
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x
x

yxyx
yxyx

x
x

yxyx
yxyx

x
x

yxyx
yxyx

y
y
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2221

1211

2

1

2221

1211

2

1

2221

1211

2

1

                                    

,,
,,

2
1

, 

(1.1.5) 

or in vector form 

( ) ( ) ( ) ( ) ( ){ } ( ) ( )∫∫ ⋅−+⋅+⋅−=
Ω∂ V

dVUdSWU xbyxxpyxxuyxyu ,
2
1

.        (1.1.6) 

where      – displacements     ( ) ( )
( )⎥⎦

⎤
⎢
⎣

⎡
=

x
x

xu
2

1

u
u
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      – traction                ( ) ( )
( )⎥⎦

⎤
⎢
⎣

⎡
=

x
x

xp
2

1

p
p

 

                – matrix fundamental solutions  

  – for  displacements     ( ) ( ) ( )
( ) ( )⎥⎦

⎤
⎢
⎣

⎡
−−
−−

=−
yxyx
yxyx

yx
2221

1211

UU
UU

U  

  – for traction               ( ) ( ) ( )
( ) ( )⎥⎦

⎤
⎢
⎣

⎡
=

yxyx
yxyx

yx
,,
,,

,
2221

1211

WW
WW

W  

                – body forces                ( ) ( )
( )⎥⎦

⎤
⎢
⎣

⎡
=

x
x

xb
2

1

b
b

 

for tractions we have the equations in vector and matrix form: 

( ) ( ) ( ) ( ) ( ){ } ( ) ( )∫∫ ⋅+⋅−⋅=
Ω∂ V

dVKdSFK xbyxxuyxxpyxyp ,,,
2
1

.                           (1.1.7) 
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,,
,,

,,
,,

2
1

 (1.1.8) 

1.2 The boundary integral equations analysis   

For more compact record and analysis of the BIE (1.1.6) and (1.1.7) and we will introduce the following notations for 

potentials: 

– boundary potentials from the expression (1.1.6) 

∫
∂

−=Ω∂
V

ijjjij dSUppU )()(),,( yxxx .                              (1.2.1) 

∫
∂

=Ω∂
V

ijjjij dSWuuW ),()(),,( yxxx .                                 (1.2.2) 

 – body potentials from the expression (1.1.6) 
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( ) ∫ −=Ω
V

ijjjij dVUbbU )()(,, yxxx .                                  (1.2.3) 

 – boundary potentials from the expression (1.1.7) 

∫
∂

=Ω∂
V

ijjjij dSKppK ),()(),,( yxxx .                                (1.2.4) 

∫
∂

=Ω∂
V

ijiiij dSFuuF yxxx ,()(),,( .                                     (1.2.5) 

 – body potentials from the expression (1.1.7) 

( ) ∫=Ω
V

ijjjij dVKbbK ),()(,, yxxx .                                    (1.2.6) 

 Thus, using notations (1.2.1-6), the BIEs (1.1.6) and (1.1.7) may be presented in the form 

( )Ω+Ω∂−Ω∂=⋅± ,,),,(),,()(
2
1 xxxy jijjijjiji bUuWpUu .           (1.2.7) 

( )Ω+Ω∂−Ω∂=⋅± ,,),,(),,()(
2
1 xxxy jijiijjiji bBuFpKp .          (1.2.8) 

Exactly form of the BIEs, obtained from the expression (1.2.7) and (1.2.8), depends on the type of the boundary 

conditions. As it is known, in the classic case scope terms can be Dirihle and Neymana. The mixed case is also possible. 

 Let us consider mixed boundary conditions. In this case on the part of the boundary uV∂  the displacements vector is 

known, and there on the part of the boundary uV∂  the vector of the traction is known consequently, 

( ) ( )yy ϕ=iu ,   uV∂∈∀y      and     ( ) ( )yy iip ψ= ,   pV∂∈∀y .            (1.2.9) 

 Thus, for mixed boundary conditions it is possible to write the following BIEs. 

The Type 1 

( )Ω−⋅±=Ω∂−Ω∂ ,,)(
2
1),,(),,( xyxx jijijijjij bUuWpU ϕ ,     uV∂∈∀y  

( )Ω=Ω∂+Ω∂−⋅± ,,),,(),,()(
2
1 xxxy jijjijjiji bUuWpUu     pV∂∈∀y       (1.2.10) 

The potentials here contain only weekly singular and singular integrals. 

 The Type 2 
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( )Ω=Ω∂+Ω∂−⋅± ,,),,(),,()(
2
1 xxxy jijiijjiji bBuFpKp ,     uV∂∈∀y  

( )Ω−⋅±=Ω∂−Ω∂ ,,)(
2
1),,(),,( xyxx jijiiijjij bBuFpK ψ      pV∂∈∀y       (1.2.11) 

The potentials here contain only singular and hypersingular integrals. 

 The Type 3. 

( )Ω−⋅±=Ω∂−Ω∂ ,,)(
2
1),,(),,( xyxx jijijijjij bUuWpU ϕ ,     uV∂∈∀y  

( )Ω−⋅±=Ω∂−Ω∂ ,,)(
2
1),,(),,( xyxx jijiiijjij bBuFpK ψ      pV∂∈∀y       (1.2.12) 

The potentials here contain weekly singular, singular and hypersingular integrals. 

 The Type 4. 

( )Ω=Ω∂+Ω∂−⋅± ,,),,(),,()(
2
1 xxxy jijiijjiji bBuFpKp ,     uV∂∈∀y  

( )Ω=Ω∂+Ω∂−⋅± ,,),,(),,()(
2
1 xxxy jijjijjiji bUuWpUu     pV∂∈∀y      (1.2.13) 

The potentials here contain weekly singular, singular and hypersingular integrals. 

1.3. Fundamental solutions U and W (general case) 

The fundamental solutions for equation (1.1.3) and its derivatives have the form: 

,)ln()43(
)1(8

1)(
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∂
∂

∂
∂

−−
−

−
=−

ji
ijij x

r
x
rrU δν

νπµ
yx                             (1.3.1) 

or 

,)ln()43(
)1(8

1)(
⎭
⎬
⎫

⎩
⎨
⎧ −−

−−
−

−
=−

r
yx

r
yxrU jjii

ijij δν
νπµ

yx                           (1.3.2) 

1=i , 1=j  
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⎪⎭
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rrU ν
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yx                        (1.3.3) 
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1=i , 2=j  

21
12 )1(8

1)(
x
r

x
rU
∂
∂

∂
∂

−
=−

νπµ
yx                                               (1.3.5) 

,
)1(8

1)( 2211
12 r

yx
r

yxU −−
−

=−
νπµ

yx                                       (1.3.6) 

2=i , 1=j  

,
)1(8

1)(
21

21 x
r

x
rU
∂
∂

∂
∂

−
=−

νπµ
yx                                                          (1.3.7) 

,
)1(8

1)( 2211
21 r

yx
r

yxU −−
−

=−
νπµ

yx                                                 (1.3.8) 

2=i , 2=j  
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yx                                    (1.3.9) 
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22

22 )ln()43(
)1(8

1)(
r

yxrU ν
νπµ

yx                                (1.3.10) 

1) Here we use definition of the delta function 

⎩
⎨
⎧

≠
=

=
ji
ji

ij    при   0
   при    1

δ  

2) It is clear that,                                     )()( 2112 yxyx −=− UU    .                                       (1.3.11) 

The fundamental solution W  can be obtained from the fundamental solution U  by use of the following operator: 
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x δµλ ,                     (1.3.12) 

where  ( )( )νν
λ

211 −+
=

E
,   ( )νµ

+
=

12
E

. 

Fundamental solution W has the form 
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1=i , 1=j  
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1=i , 2=j  
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2=i , 1=j   
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2=i , 2=j  
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⎠
⎞

⎜
⎝
⎛ −

+
−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ −

+−
−
−

= xxyx 2
22

1
11

2
22

22 221
)1(4

1),( n
r

yxn
r

yx
r

yx
r

W ν
νπ

  (1.3.21) 

 Here we use the following notations: 

r
yx

x
r ii

i

−
=

∂
∂

 – partial space derivative with respect to  ix                           (1.3.22) 

derivative in the normal direction  – 

( ) ( ) ( ) ( ) ( ) ( )xxxx
x

x 2
22

1
11

2
2

1
1

n
r

yxn
r

yxn
x
rn

x
r

n
rn −

+
−

=
∂
∂

+
∂
∂

=
∂
∂

=∂  .     (1.3.23) 

( ),xin  ( )xjn  - cosines in the direction perpendicular to axis i  и j  correspondently. 

 

 

 
 
 
 
 
 
 

Cosines in direction 
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Fig. 1.3.1 

 It is visible from the Fig. 1.3.1, that the position of the boundary element can be set through the co-ordinates of unit 

normal vector ( )xn : 

( ) 211 sincos αα ==xn , 

( ) 212 cossin αα ==xn                                            (1.3.24) 

 In coordinate form: 

( )
r

yxn 11
11 cos −
== αx    and   ( )

r
yxn 22

12 sin −
== αx ,                         (1.3.25) 

where 2
22

2
11 )()()( yxyxrr −+−== yx,  is the distance between points ( )21, xxx   

           and ( )21, yyy . 

1α

2α

1α

2α

( ) ( )( )xxn 21 ,nn  

1x

2x

1x

2x  

l

( )21, yyy  

( )21, xxx
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1.4 Fundamental solutions K and F (general case)  

The fundamental solution K  can be obtained from the fundamental solution U  by use of the following 

operator: 

( ) ( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
+

∂

∂
+

∂

∂
=

i

ij
j

ij
ij

j

ij
iij y

U
n

n
U

y
U

nK y
y

y δµλ                             (1.4.1) 

and the fundamental solution F  

( ) ( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
+

∂

∂
+

∂

∂
=

i

ij
j

ij
ij

j

ij
iij y

W
n

n
W

y
W

nF y
y

y δµλ                             (1.4.2) 

 The fundamental solutions for equation (1.1.4)  and its derivatives have the form: 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

∂
∂

∂
∂

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

−
∂
∂

+
∂
∂

−
−

=
t
r

x
r

x
rt

x
rt

x
r

t
r

r
K

ji
j

i
i

j
ijij 2)21(

)1(4
1)( δν
νπ

yx,      (1.4.3) 

or concretely for 2,1, =ji  

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

−
−

=
t
r

x
r

t
r

r
K

2

1
11 2)21(

)1(4
1)( ν
νπ

yx,                                (1.4.4) 

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

−
−

=
t
r

x
r

x
rt

x
rt

x
r

r
K

21
2

1
1

2
12 2)21(

)1(4
1)( ν
νπ

yx,         (1.4.5) 

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

−
−

=
t
r

x
r

x
rt

x
rt

x
r

r
K

21
1

2
2

1
21 2)21(

)1(4
1)( ν
νπ

yx,                      (1.4.6) 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

−
−

=
t
r

x
r

t
r

r
K

2

2
22 221

)1(4
1)( ν
νπ

yx,                                  (1.4.7) 

 Other notation of the fundamental solutions has the form 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ⎥
⎦

⎤−−
⎟
⎠
⎞

⎜
⎝
⎛ −

+
−

−⎟⎟
⎠

⎞−
+

⎢
⎣

⎡
⎜
⎝

⎛
+

−
−⎟

⎠
⎞

⎜
⎝
⎛ −

+
−

−−
−
−

=

r
yx

r
yxn

r
yxn

r
yxn

r
yx

n
r

yxn
r

yxn
r

yx
r

K

jjii
i

jj

j
ii

ijij

yyy

yyyyx,

2
22

1
11

2
22

1
11

2                              

21
)1(4

1)( δν
νπ

  

  (1.4.8) 

where: 

r
yx

y
r ii

i

−
−=

∂
∂

 – derivative with respect to iy           ……                                 (1.4.9) 

derivative in the normal direction – 

( ) ( ) ( ) ( ) ( ) ( )yyyy
y

y 2
22

1
11

2
2

1
1

n
r

yxn
r

yxn
y
rn

y
r

n
rn −

−
−

−=
∂
∂

+
∂
∂

=
∂
∂

=∂  –        

(1.4.10) 

( ),yin  ( )yjn  - cosines in the direction perpendicular to axis i  и j  correspondently. 

And 

1=i ,  1=j  

( ) ( ) ( )

( ) ( )
⎥
⎥
⎦

⎤
⎟
⎠
⎞

⎜
⎝
⎛ −
⎟
⎠
⎞

⎜
⎝
⎛ −

+
−

−

−⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −

+
−

−−
−
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=

2
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2
22

1
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2
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1
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2                                                       
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)1(4

1)(

r
yxn

r
yxn

r
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n
r
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r
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r

K
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yyyx, ν
νπ

 

( ) ( ) ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

+
−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −
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−

= yyyx, 2
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1
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2
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11 221
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1)( n

r
yxn

r
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r
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r
K ν

νπ
   

(1.4.11) 

( ) ( )⎥
⎥
⎦

⎤

⎢
⎢
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⎡

∂
∂

⎟
⎟

⎠

⎞

⎜
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⎛
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⎠
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⎛
∂
∂
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−

=
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n

r
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2

1
11 221
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                              (1.4.12) 
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1=i ,  2=j  

( ) ( ) ( )

( ) ( ) ⎥
⎦

⎤−−
⎟
⎠
⎞

⎜
⎝
⎛ −

+
−

+

⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛ −

−
−

−
−

=

r
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r
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n
r
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n

r
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n
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n

r
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r
K
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2
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1
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2
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1
22

12

2                               
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)1(4

1)(
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yyyx, ν
νπ

               (1.4.13) 

( ) ( ) ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡

∂
∂

∂
∂

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

−
−

=
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2
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1
2
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1)(
y
r

y
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n
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x
rn

x
r

r
K

y
yyyx, ν
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             (1.4.14) 

2=i ,  1=j  

( ) ( )

⎥
⎦
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⎟
⎠
⎞

⎜
⎝
⎛ −

+
−

−

⎢⎣
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−
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−
−

−
−

=

r
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r
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r
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r
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n
r
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r
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r

K
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2
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1
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2
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1
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1)( yyyx,
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                   (1.4.15) 
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⎦

⎤
∂
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∂
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∂
∂
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⎡
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∂
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∂
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−
−
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=
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2
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1
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y
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y
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n
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y
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y
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r
K

y
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         (1.4.16) 

2=i ,  2=j  
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⎠
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⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

+
−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −

−−−
−
−

= yyyx, 2
22

1
11

2
22

22 221
)1(4

1)( n
r

yxn
r

yx
r

yx
r

K ν
νπ

       

(1.4.17) 
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Fundamental solution F has the form: 

( ) ( ) ( ) ( ) ( )
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∂
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∂
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∂
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∂
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∂
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∂
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∂
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∂
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r
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r
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r
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y
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y
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(1.4.19) 

Or in specific cases 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
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∂
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(1.4.20) 
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     (1.4.21) 

(1.4.22) 
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2
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µ

 

(1.4.23) 

1.5 Analysis of the fundamental solutions for the main elements 

The boundary potentials (fundamental solutions) contain divergent integrals which arise up when point y  

move to the boundary of region. The analysis of these integrals shows that they contain: 

 – )( yx −ijU  weak singularity, i.e., 

( ) ( )rUij ln→− yx .                                                   (1.5.1) 

– ),( yxijW  and )( yx,ijK  singularity in the Cauchy sense: 

r
Wij

1),( →yx ,     
r

Kij
1)( →yx, .                                       (1.5.2) 

– )( yx,ijF  – strong singularity in the Hadamard sense, i.e., 

2

1)(
r

Fij →yx, .                                                      (1.5.3) 
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1.6 Inclusion problem 

We consider the 2-D domain 1V  with an inclusion 2V  (Fig. 1.6.1). 

 
Fig. 1.6.1 

BIEs for the domain  1V  have the form 

{ }

{ }∫

∫

∂

∂

−−+

+−−=

12

1

),()()()(                                                      

),()()()()(
2
1

112112

11111

V
ijjijj

V
ijjijji

dSWuUp

dSWuUpu

yxxyxx

yxxyxxy
      (1.6.1) 

BIEs for the inclusion  2V  have the form 

{ }∫
∂

−−=
12

),()()()()(
2
1 22122121

V
ijjijji dSWuUpu yxxyxxy                       (1.6.2) 

On the boundary between domain and inclusion 12V∂  the following conditions have to fulfill  

)()( 1221 xx jj uu = ,    )()( 1221 xx jj pp −=                                   (1.6.3) 

Therefore (1.6.2)  has the form 

{ }∫
∂

+−−=
12

),()()()()(
2
1 21221212

V
ijjijji dSWuUpu yxxyxxy                    (1.6.4) 

As result we obtain the system of BIEs in the form  

2V - 
inclusion 

1V - domain 

1V∂  

12V∂  
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{ } { }

{ }
⎪
⎪
⎩

⎪⎪
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∂

∂∂
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2
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yxxyxxy

yxxyxxyxxyxxy

 

(1.6.5) 

We rewrite the system (1.6.5) in the matrix form. For that we change order of equations in (1.6.5) and write 

them in more details:  
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⎪
⎪
⎪
⎪
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⎪
⎪
⎪
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(1.6.6) 

 or in matrix form: 
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(1.6.7) 

Matrices in equation (1.6.7) have the block structure. Let N  – is the number of boundary elements at the 

boundary of domain.  
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 We consider the following rectangular domain with the circular inclusion (Fig.1.7.1) 

 

 

 
 

Fig.1.7.1 

 

 Mechanical characteristics :  

– domain:        module of elasticity 20000=E ,    Poisson ratio 1.0=µ ; 

–inclusion:   module of elasticity 100000=E ,   Poisson ratio 2.0=µ . 

Each boundary contains 20 boundary elements. 

 The singular kernels have been calculated analytically and regular kernels have been calculated using the 

Gauss formulas with constant weight. 

 Forces applied as it is shown in (Fig.1.7.1). 

1x

2x  

300=P

300=P

300=P  

300=P

20

16
4



STCU                   PROJECT P110 - FINAL REPORT                                    FF PAGE 110 

         
8/11/2005  

110 
 

 Bellow we present data for calculation using our FORTRAN program. 

 

  1) General data: 

                                  NUMBER OF BOUNDARY ELEMENTS  =  40 

                                  NUMBER OF INTERNAL POINTS  =  2 

DOMAIN SHEAR MODULUS          = 0.2000000E+05 

DOMAIN POISSON RATIO              = 0.1000000E+00 

INCLUSION SHEAR MODULUS     = 0.1000000E+06 

INCLUSION POISSON RATIO         = 0.2000000E+00 

2) Coordinates of boundary elements: 

  а) rectangular domain: 

          X1                       X2 

1       0.0000000E+00      0.0000000E+00 

2       0.0000000E+00      0.3200000E+01 

3       0.0000000E+00      0.6400000E+01 

4       0.0000000E+00      0.9600000E+01 

5       0.0000000E+00      0.1280000E+02 

6       0.0000000E+00      0.1600000E+02 

7       0.4000000E+01      0.1600000E+02 

8       0.8000000E+01      0.1600000E+02 

9       0.1200000E+02      0.1600000E+02 

10      0.1600000E+02      0.1600000E+02 

11      0.2000000E+02      0.1600000E+02 

12      0.2000000E+02      0.1280000E+02 

13      0.2000000E+02      0.9600000E+01 

14      0.2000000E+02      0.6400000E+01 

15      0.2000000E+02      0.3200000E+01 

16      0.2000000E+02      0.0000000E+00 

17      0.1600000E+02      0.0000000E+00 

18      0.1200000E+02      0.0000000E+00 

19      0.8000000E+01      0.0000000E+00 

20      0.4000000E+01      0.0000000E+00 

  б) Inclusion: 

          X1                       X2 

21      0.1000000E+02      0.6000000E+01 

22      0.9382000E+01      0.6097900E+01 

23      0.8824400E+01      0.6382000E+01 
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24      0.8382000E+01      0.6824400E+01 

25      0.8097900E+01      0.7382000E+01 

26      0.8000000E+01      0.8000000E+01 

27      0.8097900E+01      0.8618000E+01 

28      0.8382000E+01      0.9175600E+01 

29      0.8824400E+01      0.9618000E+01 

30      0.9382000E+01      0.9904000E+01 

31      0.1000000E+02      0.1000000E+02 

32      0.1061800E+02      0.9902100E+01 

33      0.1117560E+02      0.9618000E+01 

34      0.1161800E+02      0.9175600E+01 

35      0.1190210E+02      0.8618000E+01 

36      0.1200000E+02      0.8000000E+01 

37      0.1190210E+02      0.7382000E+01 

38      0.1161800E+02      0.6824400E+01 

39      0.1117560E+02      0.6382000E+01 

40      0.1061800E+02      0.6097900E+01 

3) Boundary conditions 

           X1  DIRECTION               X2  DIRECTION 

1          0.0000000E+00                 0.0000000E+00         

2          0.0000000E+00                 0.0000000E+00         

3         -0.3000000E+03                 0.0000000E+00        

4          0.0000000E+00                 0.0000000E+00         

5          0.0000000E+00                 0.0000000E+00         

6          0.0000000E+00                 0.0000000E+00         

7          0.0000000E+00                 0.0000000E+00         

8          0.0000000E+00                -0.3000000E+03         

9          0.0000000E+00                 0.0000000E+00         

10         0.0000000E+00                 0.0000000E+00         

11         0.0000000E+00                 0.0000000E+00         

12         0.0000000E+00                 0.0000000E+00         

13         0.3000000E+03                 0.0000000E+00         

14         0.0000000E+00                 0.0000000E+00         

15         0.0000000E+00                 0.0000000E+00         

16         0.0000000E+00                 0.0000000E+00         

17         0.0000000E+00                 0.0000000E+00         
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18         0.0000000E+00                 0.3000000E+03         

19         0.0000000E+00                 0.0000000E+00         

20         0.0000000E+00                 0.0000000E+00         

21         0.0000000E+00                 0.0000000E+00         

22         0.0000000E+00                 0.0000000E+00         

23         0.0000000E+00                 0.0000000E+00         

24         0.0000000E+00                 0.0000000E+00         

25         0.0000000E+00                 0.0000000E+00         

26         0.0000000E+00                 0.0000000E+00         

27         0.0000000E+00                 0.0000000E+00         

28         0.0000000E+00                 0.0000000E+00         

29         0.0000000E+00                 0.0000000E+00         

30         0.0000000E+00                 0.0000000E+00         

31         0.0000000E+00                 0.0000000E+00         

32         0.0000000E+00                 0.0000000E+00         

33         0.0000000E+00                 0.0000000E+00         

34         0.0000000E+00                 0.0000000E+00         

35         0.0000000E+00                 0.0000000E+00         

36         0.0000000E+00                 0.0000000E+00         

37         0.0000000E+00                 0.0000000E+00         

38         0.0000000E+00                 0.0000000E+00         

39         0.0000000E+00                 0.0000000E+00         

40         0.0000000E+00                 0.0000000E+00         

 

4) Coordinates of the centers of the boundary elements 

X1                  X2 

1       0.0000000E+00      0.1600000E+01 

2       0.0000000E+00      0.4800000E+01 

3       0.0000000E+00      0.8000000E+01 

4       0.0000000E+00      0.1120000E+02 

5       0.0000000E+00      0.1440000E+02 

6       0.2000000E+01      0.1600000E+02 

7       0.6000000E+01      0.1600000E+02 

8       0.1000000E+02      0.1600000E+02 

9       0.1400000E+02      0.1600000E+02 

10      0.1800000E+02      0.1600000E+02 

11      0.2000000E+02      0.1440000E+02 
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12      0.2000000E+02      0.1120000E+02 

13      0.2000000E+02      0.8000000E+01 

14      0.2000000E+02      0.4800000E+01 

15      0.2000000E+02      0.1600000E+01 

16      0.1800000E+02      0.0000000E+00 

17      0.1400000E+02      0.0000000E+00 

18      0.1000000E+02      0.0000000E+00 

19      0.6000000E+01      0.0000000E+00 

20      0.2000000E+01      0.0000000E+00 

21      0.9691000E+01      0.6048950E+01 

22      0.9103200E+01      0.6239950E+01 

23      0.8603200E+01      0.6603200E+01 

24      0.8239950E+01      0.7103200E+01 

25      0.8048950E+01      0.7691000E+01 

26      0.8048950E+01      0.8309000E+01 

27      0.8239950E+01      0.8896800E+01 

28      0.8603200E+01      0.9396800E+01 

29      0.9103200E+01      0.9761000E+01 

30      0.9691000E+01      0.9952000E+01 

31      0.1030900E+02      0.9951050E+01 

32      0.1089680E+02      0.9760050E+01 

33      0.1139680E+02      0.9396800E+01 

34      0.1176005E+02      0.8896800E+01 

35      0.1195105E+02      0.8309000E+01 

36      0.1195105E+02      0.7691000E+01 

37      0.1176005E+02      0.7103200E+01 

38      0.1139680E+02      0.6603200E+01 

39      0.1089680E+02      0.6239950E+01 

40      0.1030900E+02      0.6048950E+01 

 5) Results of the calculations in some points of the domain: 

                         X1                       X2                  SIGMA X1          TAU X1X2          SIGMA X2 

0.1240000E+02   0.1020000E+02   0.3476998E+02   0.1663189E+02   0.2616725E+02 

0.1000000E+02   0.8000000E+01  -0.7020971E+02  -0.9875047E+01   0.5356906E+02
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1.8 Numerical example for the two-dimensional problem with an inclusion located non-symmetrically 

Let us consider the following rectangular domain 1V  (Aluminum, mechanical characteristics: the Young 

module of elasticity 70=E  GPa, the Poisson ratio 33.0=ν , the material density 2700=ρ  kg/m3) with the 

circular inclusion 2V  (Iron, the Young module of elasticity 200=E  GPa, the Poisson ratio 29.0=ν , the 

material density 7870=ρ  kg/m3) under static tension. The circular inclusions located non-symmetrically, so 

{ }bxbaxaV ≤≤−≤≤−= 211  ,  and { }22
2

2
12 )()( ctxsxV ≤−+−=  (see Figure 1.8.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8.1 

The distributions of the normal stress and the normal displacement on the section 

{ }txaxaS =≤≤−= 21   ,  have been shown in Figures 1.8.2 and 1.8.3 for the case 

3  ,8  ,10 === cba , 5=s , 3=t . 
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Figure 1.8.2.  
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Figure 1.8.3. Normal displacement. 

 

1.9 Computer codes 

The initial data for the program is the text file “date_Include.txt”; the results file is the text file “result.txt”. 
 
!------------------------------------------------------------------------------ 
! 
      PROGRAM BEM_INCLUD_V3 
!______________________________________________________________________________ 
! 
!  THIS PROGRAM SOLVES TWO-DIMENSIONAL ELASTIC PROBLEMS FOR THE DOMAIN WITH INCLUSION USING BOUNDARY 
ELEMENTS 
!                                                            (USING BOUNDARY INTEGRAL EQUATIONS METHOD) 
! 
      CHARACTER*20 FILEIN,FILEOUT 
! 
      COMMON/MATU/ U(1000,1000) 
      COMMON/MATW/ W(1000,1000) 
      COMMON N,L,NC(5),M,GE,XNU,INP,IPR,GE1,XNU1 
      DIMENSION X(501),Y(501),XM(500),YM(500),FI(1000),DFI(1000) 
      DIMENSION CODE(1000),CX(500),CY(500),SSOL(1000),DSOL(1000) 
! 
!  NX - MAXIMUN DIMENSION OF THE SYSTEM OF EQUATIONS (NX) 
! 
      NX=1000 
! 
!  ASSIGN NUMBERS FOR INPUT AND OUTPUT FILES 
! 
      INP=7 
      IPR=8 

1xu

910865.0 −⋅  

91055.0 −⋅

91038.0 −⋅

91018.0 −⋅

910051.0 −⋅

910051.0 −⋅

91018.0 −⋅

91038.0 −⋅
91055.0 −⋅

910865.0 −⋅
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! 
! READ DATES FROM FILE "date_Include.txt" AND WRITES REZULTS IN FILE result.txt 
! (IN COMMON FOLDER, WHERE IS PROGRAM) 
! 
      OPEN(INP,FILE='date_Include.txt') 
      OPEN(IPR,FILE='result.txt') 
! 
!  READ DATA 
! 
      CALL INPUTEC(CX,CY,X,Y,CODE,FI) 
! 
!  COMPUTE W AND U MATRICES AND FORM SYSTEM  
! 
      CALL UWMATEC(X,Y,XM,YM,U,W,FI,DFI,CODE,NX) 
! 
!  SOLVE SLAE 
! 
      NN=2*N 
      CALL SLNPD(U,DFI,D,NN,NX) 
! 
!  COMPUTE STRESS AND DISPLACEMENT AT INTERNAL POINTS 
! 
      CALL INTEREC(FI,DFI,CODE,CX,CY,X,Y,SSOL,DSOL) 
! 
!  PRINT RESULTS 
! 
      CALL OUTPTEC(XM,YM,FI,DFI,CX,CY,SSOL,DSOL) 
! 
      CLOSE (INP) 
      CLOSE (IPR) 
! 
      STOP 
      END PROGRAM BEM_INCLUD_V3 
! 
! 
! 
!----------------------------------------------------------------------- 
      SUBROUTINE INPUTEC(CX,CY,X,Y,CODE,FI) 
!_______________________________________________________________________ 
! 
      CHARACTER*80 TITLE 
      DIMENSION CX(1),CY(1),X(1),Y(1),CODE(1),FI(1) 
      COMMON N,L,NC(5),M,GE,XNU,INP,IPR,GE1,XNU1 
! 
!  N     -   NUMBER OF HALF BOUNDARY NODES (= NUMBER OF ELEMENTS) 
!  L     -   NUMBER OF INTERNAL POINTS WHERE DISPLACEMENT AND STRESS 
!            ARE CALCULATED 
!  M     -   NUMBER OF DIFFERENT BOUNDARIES 
!  NC(I) -   LAST NODE OF BOUNDARY I 
!  GE    -   DOMAIN SHEAR MODULUS 
!  XNU   -   DOMAIN POISSON MODULUS 
!  GE1   -   INCLUDE SHEAR MODULUS 
!  XNU1  -   INCLUDE POISSON MODULUS 
! 
      WRITE(IPR,20) 
  20  FORMAT(/' ',3('BEM_INCLUDE V.2  ')) 
! 
!  READ-WRITE TITLE 
! 
      READ(INP,'(A)') TITLE 
      WRITE(IPR,'(A)') TITLE 
! 
!  READ NUMBER OF NODES, INTERNAL POINTS AND DIFFERENT BOUNDARIES; 
!  READ LAST NODES OF THESE BOUNDARIES AND MATERIAL PROPERTIES 
! 
      READ(INP,*)N,L,M,(NC(K),K=1,5),GE,XNU,GE1,XNU1 
      WRITE(IPR,300)N,L,GE,XNU,GE1,XNU1 
300 FORMAT(//' DATA'//2X,'NUMBER OF BOUNDARY ELEMENTS =',I3/2X, 
1      'NUMBER OF INTERNAL POINTS =',I3/2X, 
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2      'DOMAIN SHEAR MODULUS      =',E14.7/2X, 
3      'DOMAIN POISSON RATIO      =',E14.7/2X, 
4      'INCLUDE SHEAR MODULUS     =',E14.7/2X, 
5      'INCLUDE POISSON RATIO     =',E14.7/2X) 
       IF(M)40,40,30 
30   WRITE(IPR,999)M,(NC(K),K=1,M) 
999   FORMAT(2X,'NUMBER OF DIFFERENT BOUNDARIES=',I3/2X, 'LAST NODES OF THESE BOUNDARIES =',5(2X,I3)) 
! 
!  READ COORDINATES OF EXTREME POINTS OF THE BOUNDARY 
!  ELEMENTS IN ARRAYS X AND Y 
! 
40   WRITE(IPR,500) 
500 FORMAT(//2X,'COORDINATES OF THE EXTREME POINTS OF',' THE BOUNDARY ELEMENTS OF 
DOMAIN'//4X,'POINT',10X,'X',18X,'Y') 
      READ(INP,*) (X(I),Y(I),I=1,N) 
      DO I=1,N/2 
           WRITE(IPR,700)I,X(I),Y(I) 
      END DO 
700 FORMAT(5X,I3,2(5X,E14.7)) 
! 
      WRITE(IPR,501) 
501 FORMAT(//2X,'COORDINATES OF THE EXTREME POINTS OF',' THE BOUNDARY ELEMENTS OF 
INCLUDE'//4X,'POINT',10X,'X',18X,'Y') 
      DO I=N/2+1,N 
            WRITE(IPR,701)I,X(I),Y(I) 
      END DO 
701 FORMAT(5X,I3,2(5X,E14.7)) 
! 
!  READ BOUNDARY CONDITIONS IN FI(I) VECTOR, IF CODE(I)=0 THE FI(I) 
!  VALUE IS A KNOWN DISPLACEMENT; IF CODE(I)=1 THE FI(I) VALUE IS A 
!  KNOWN TRACTION. 
! 
       WRITE(IPR,800) 
800 FORMAT(//2X,'BOUNDARY CONDITIONS'//15X,'PRESCRIBED VALUE',15X, 
1   'PRESCRIBED VALUE'/5X,'NODE',9X,'X DIRECTION',8X,'CODE',8X,'Y DIRECTION',8X,'CODE') 
      DO I=1,N 
          READ(INP,*) CODE(2*I-1),FI(2*I-1),CODE(2*I),FI(2*I) 
          WRITE(IPR,950)I,FI(2*I-1),CODE(2*I-1),FI(2*I),CODE(2*I) 
      END DO 
950 FORMAT(5X,I3,8X,E14.7,8X,I1,8X,E14.7,8X,I1) 
! 
!  READ COORDINATES OF THE INTERNAL POINTS 
! 
       IF(L.EQ.0) GO TO 50 
              READ(INP,*) (CX(I),CY(I),I=1,L) 
50   RETURN 
      END SUBROUTINE INPUTEC 
! 
! 
! 
! 
!----------------------------------------------------------------------- 
! 
      SUBROUTINE UWMATEC(X,Y,XM,YM,U,W,FI,DFI,CODE,NX) 
!_______________________________________________________________________ 
! 
!  THIS SUBROUTINE COMPUTES THE U AND W MATRICES AND 
!  FORMS THE SYSTEM OF EQUATIONS A X = F 
! 
      DIMENSION U(NX,NX),W(NX,NX) 
      DIMENSION X(1),Y(1),XM(1),YM(1),FI(1) 
      DIMENSION CODE(1),DFI(1) 
      COMMON N,L,NC(5),M,GE,XNU,INP,IPR,GE1,XNU1 
! 
!  COMPUTE THE NODAL COORDINATES AND STORE IN ARRAYS XM AND YM 
! 
      DO I=1,N/2-1 
         XM(I)=(X(I)+X(I+1))/2 
10     YM(I)=(Y(I)+Y(I+1))/2 
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      END DO 
      XM(N/2)=(X(1)+X(N/2))/2 
      YM(N/2)=(Y(1)+Y(N/2))/2 
! 
      DO I=N/2+1,N-1 
         XM(I)=(X(I)+X(I+1))/2 
         YM(I)=(Y(I)+Y(I+1))/2 
      END DO 
      XM(N)=(X(N/2+1)+X(N))/2 
      YM(N)=(Y(N/2+1)+Y(N))/2 
!  
!  PRINT XM AND YM IN FILE "result" 
! 
      WRITE(IPR,501) 
501 FORMAT(//2X,'COORDINATES CENTERS OF BOUNDARY ELEMENT ', (NODES IN ARRAYS XM AND 
YM)'//4X,'POINT',10X,'XM',18X,'YM') 
       DO I=1,N 
           WRITE(IPR,701)I,XM(I),YM(I) 
       END DO 
701 FORMAT(5X,I3,2(5X,E14.7)) 
! 
!  CALCULATE COORDINATS INTERNAL NODES       
! 
      IF(M-1)15,15,12 
12   XM(NC(1))=(X(NC(1))+X(1))/2 
       YM(NC(1))=(Y(NC(1))+Y(1))/2 
       DO K=2,M 
          XM(NC(K))=(X(NC(K))+X(NC(K-1)+1))/2 
          YM(NC(K))=(Y(NC(K))+Y(NC(K-1)+1))/2 
       END DO 
! 
!  COMPUTE THE COEFICIENTS OF U AND W MATRICES 
! 
15 DO 30 I=1,N 
        DO 30 J=1,N 
           IF(M-1)16,16,17 
17       IF(J-NC(1))19,18,19 
18         KK=1 
                GO TO 23 
19         DO 22 K=2,M 
              IF(J-NC(K))22,21,22 
21           KK=NC(K-1)+1 
                GO TO 23 
22         CONTINUE 
16     KK=J+1 
23     IF(I-J)20,25,20 
! 
! 
20     CALL EXTINEC(XM(I),YM(I),X(J),Y(J),X(KK),Y(KK), 
1                 W((2*I-1),(2*J-1)),W((2*I-1),(2*J)), 
2                 W((2*I),(2*J-1)),W((2*I),(2*J)), 
3                 U((2*I-1),(2*J-1)),U((2*I-1),(2*J)), 
4                 U((2*I),(2*J))) 
! 
          U((2*I),(2*J-1))=U((2*I-1),(2*J)) 
          GO TO 26 
25     CALL LOCINEC(X(J),Y(J),X(KK),Y(KK),U((2*I-1),(2*J-1)),U((2*I-1),(2*J)),U((2*I),(2*J))) 
! 
! DIAGONAL 
      IF (1<=I<=N/2) THEN 
           IF (1<=J<=N/2) THEN 
               W(I,J)=0.5 
          END IF 
     END IF 
! 
      IF (N/2+1<=I<=2*N/2) THEN 
           IF (N/2+1<=J<=2*N/2) THEN 
                W(I,J)=0.5 
          END IF 
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     END IF 
! 
      IF (2*N/2+1<=I<=3*N/2) THEN 
           IF (2*N/2+1<=J<=3*N/2) THEN 
                W(I,J)=0.5 
           END IF 
      END IF 
! 
      IF (3*N/2+1<=I<=4*N/2) THEN 
            IF (3*N/2+1<=J<=4*N/2) THEN 
                 W(I,J)=0.5 
            END IF 
      END IF 
! 
! ETS DIAGONAL 
! 
      IF (1<=I<=N/2) THEN 
           IF (N/2+1<=J<=2*N/2) THEN 
                IF (I==J-N/2) THEN  
                      W(I,J)=0. 
                END IF 
           END IF 
      END IF 
!   
      IF (1<=J<=N/2) THEN 
           IF (N/2+1<=I<=2*N/2) THEN 
                 IF (I==J-N/2) THEN  
                      W(I,J)=0. 
                END IF 
          END IF 
     END IF 
! 
      IF (2*N/2+1<=I<=3*N/2) THEN 
            IF (3*N/2+1<=J<=4*N) THEN 
                  IF (I==J-N/2) THEN  
    W(I,J)=0. 
                  END IF 
            END IF 
      END IF 
! 
      IF (3*N/2+1<=I<=4*N/2) THEN 
            IF (2*N/2+1<=J<=3*N/2) THEN 
                  IF (J==I-N/2) THEN  
    W(I,J)=0. 
                 END IF 
            END IF 
      END IF 
 
      U((2*I),(2*J-1))=U((2*I-1),(2*J)) 
! 
 26   CONTINUE 
 
 30 CONTINUE 
! 
!  REORDER THE COLUMNS OF THE SYSTEM OF EQUATIONS IN ACCORDANCE 
!  WITH THE BOUNDARY CONDITIONS AND FORM SYSTEM MATRIX A WHICH 
!  IS STORED IN U 
! 
      NN=2*N 
!_______________________________________________________________________ 
 
      IF (N/2+1<=I<=N) THEN 
            IF (J<=N/2) THEN 
                 U(I,J)=0 
                 W(I,J)=0 
           END IF 
      END IF 
! 
      IF (N/2+1<=I<=N) THEN 
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            IF (N+1<=J<=N+N/2) THEN 
                 U(I,J)=0 
                W(I,J)=0 
            END IF 
      END IF 
!   
      IF (N/2+N+1<=I<=2*N) THEN 
            IF (J<=N/2) THEN 
                U(I,J)=0 
                W(I,J)=0 
            END IF 
       END IF 
! 
      IF (N/2+N+1<=I<=2*N) THEN 
            IF (N+1<=J<=N+N/2) THEN 
                U(I,J)=0 
                W(I,J)=0 
           END IF 
      END IF 
!  
      IF (N/2+1<=I<=N) THEN 
           IF (N/2+1<=J<=N) THEN 
                U(I,J)=-U(I,J) 
                W(I,J)=-W(I,J) 
           END IF 
      END IF 
!   
      IF (N/2+1<=I<=N) THEN 
           IF (N+N/2+1<=J<=2*N) THEN 
                 U(I,J)=-U(I,J) 
                 W(I,J)=-W(I,J) 
           END IF 
      END IF 
!   
      IF (N+N/2+1<=I<=2*N) THEN 
            IF (N/2+1<=J<=N) THEN 
                 U(I,J)=-U(I,J) 
                 W(I,J)=-W(I,J) 
           END IF 
      END IF 
!   
      IF (N+N/2+1<=I<=2*N) THEN 
            IF (N+N/2+1<=J<=2*N) THEN 
                 U(I,J)=-U(I,J) 
                W(I,J)=-W(I,J) 
           END IF 
      END IF 
!_______________________________________________________________________   
! 
!     
      DO 50 J=1,NN 
          IF(CODE(J))43,43,40 
40     DO 42 I=1,NN 
             CH=U(I,J) 
             U(I,J)=-W(I,J) 
42         W(I,J)=-CH 
       GO TO 50 
43   DO 45 I=1,NN 
          IF (I<=N) THEN 
                U(I,J)=U(I,J)*GE 
          END IF 
          IF (I>N) THEN  
                U(I,J)=U(I,J)*GE1 
45      END IF 
50 CONTINUE 
! 
!  FORM THE RIGHT HAND SIDE VECTOR F WHICH IS STORED IN DFI 
! 
      DO 60 I=1,NN 
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          DFI(I)=0. 
          DO 60 J=1,NN 
            DFI(I)=DFI(I)+W(I,J)*FI(J) 
60 CONTINUE 
      RETURN 
      END SUBROUTINE UWMATEC 
! 
!----------------------------------------------------------------------- 
      SUBROUTINE EXTINEC(XP,YP,X1,Y1,X2,Y2,H11,H12, 
1                                        H21,H22,G11,G12,G22) 
! 
! 
!  THIS SOUBROUTINE COMPUTES THE U AND W MATRICES 
!  COEFFICIENTS THAT RELATE A COLLOCATION POINT WITH A DIFFERENT 
!  ELEMENT USING GAUSS QUADRATURE 
! 
!  DIST= DISTANCE FROM THE COLOCATION POINT TO THE 
!        LINE TANGENT TO THE ELEMENT 
!  RA= DISTANCE FROM THE COLOCATION POINT TO THE 
!      GAUSS INTEGRATION POINT AT THE BOUNDARY ELEMENT 
! 
      DIMENSION XCO(4),YCO(4),GI(4),OME(4) 
      COMMON N,L,NC(5),M,GE,XNU,INP,IPR,GE1,XNU1 
      DATA GI/0.86113631,-0.86113631,0.33998104,-0.33998104/ 
      DATA OME/0.34785485,0.34785485,0.65214515,0.65214515/ 
! 
      IF (I<=N/2) THEN 
            IF (J<=N/2) THEN 
                NU=XNU 
                MU=GE 
            END IF 
      END IF 
! 
      IF (I<=N/2) THEN 
            IF (J>N/2) THEN 
                 NU=XNU 
                 MU=GE 
            END IF 
      END IF 
! 
      IF (I>N/2) THEN 
           IF (J<=N/2) THEN 
               NU=XNU1 
               MU=GE1 
           END IF 
      END IF 
! 
      IF (I>N/2) THEN 
           IF (J>N/2) THEN 
                NU=XNU1 
                MU=GE1 
          END IF 
      END IF 
! 
      AX=(X2-X1)/2 
      BX=(X2+X1)/2 
      AY=(Y2-Y1)/2 
      BY=(Y2+Y1)/2 
!      ETA1=(Y2-Y1)/(2*SQRT(AX**2+AY**2)) 
!      ETA2=(X1-X2)/(2*SQRT(AX**2+AY**2)) 
      IF (I<=N/2) THEN 
           IF (J<=N/2) THEN 
                 ETA1=(Y2-Y1)/(2*SQRT(AX**2+AY**2)) 
                 ETA2=(X1-X2)/(2*SQRT(AX**2+AY**2)) 
           END IF 
      END IF 
! 
      IF (I<=N/2) THEN 
          IF (J>N/2) THEN 
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                ETA1=(Y2-Y1)/(2*SQRT(AX**2+AY**2)) 
                ETA2=(X1-X2)/(2*SQRT(AX**2+AY**2)) 
          END IF 
      END IF 
! 
      IF (I>N/2) THEN 
           IF (J<=N/2) THEN 
                ETA1=-(Y2-Y1)/(2*SQRT(AX**2+AY**2)) 
                ETA2=-(X1-X2)/(2*SQRT(AX**2+AY**2)) 
           END IF 
      END IF 
! 
      IF (I>N/2) THEN 
           IF (J>N/2) THEN 
                 ETA1=-(Y2-Y1)/(2*SQRT(AX**2+AY**2)) 
                 ETA2=-(X1-X2)/(2*SQRT(AX**2+AY**2)) 
           END IF 
      END IF 
! 
!  COMPUTE THE DISTANCE FROM THE POINT TO THE LINE OF THE ELEMENT 
! 
      IF(AX)10,20,10 
10    TA=AY/AX 
         DIST=ABS((TA*XP-YP+Y1-TA*X1)/SQRT(TA**2+1)) 
         GO TO 30 
20      DIST=ABS(XP-X1) 
! 
!  DETERMINE THE DIRECTION OF THE OUTWARD NORMAL 
! 
30 SIG=(X1-XP)*(Y2-YP)-(X2-XP)*(Y1-YP) 
     IF(SIG)31,32,32 
31      DIST=-DIST 
32      H11=0. 
          H12=0. 
          H21=0. 
          H22=0. 
          G11=0. 
          G12=0. 
          G22=0. 
! 
!  COMPUTE U AND W COEFFICIENTS 
! 
      DE=4*3.141592*(1-NU) 
      DO 40 I=1,4 
        XCO(I)=AX*GI(I)+BX 
        YCO(I)=AY*GI(I)+BY 
        RA=SQRT((XP-XCO(I))**2+(YP-YCO(I))**2) 
        RD1=(XCO(I)-XP)/RA 
        RD2=(YCO(I)-YP)/RA 
        G11=G11+((3-4*NU)*ALOG(1./RA)+RD1**2)*OME(I)*SQRT(AX**2+AY**2)/(2*DE*MU) 
 
!          WRITE(IPR,332)G11 
!  332     FORMAT('G11=',E14.7/2X) 
 
       G12=G12+RD1*RD2*OME(I)*SQRT(AX**2+AY**2)/(2*DE*MU) 
       G22=G22+((3-4*NU)*ALOG(1./RA)+RD2**2)*OME(I)*SQRT(AX**2+AY**2)/(2*DE*MU) 
       H11=H11-DIST*((1-2*NU)+2*RD1**2)/(RA**2*DE)*OME(I)*SQRT(AX**2+AY**2) 
       H12=H12-(DIST*2*RD1*RD2/RA+(1-2*NU)*(ETA1*RD2-ETA2*RD1))*OME(I)*SQRT(AX**2+AY**2)/(RA*DE) 
       H21=H21-(DIST*2*RD1*RD2/RA+(1-2*NU)*(ETA2*RD1-ETA1*RD2))*OME(I)*SQRT(AX**2+AY**2)/(RA*DE) 
40   H22=H22-DIST*((1-2*NU)+2*RD2**2)*OME(I)*SQRT(AX**2+AY**2)/(RA**2*DE) 
      RETURN 
      END SUBROUTINE EXTINEC 
! 
! 
! 
!----------------------------------------------------------------------- 
      SUBROUTINE LOCINEC(X1,Y1,X2,Y2,G11,G12,G22) 
!_______________________________________________________________________ 
! 



STCU                   PROJECT P110 - FINAL REPORT                                    FF PAGE 124 

         
8/11/2005  

124 
 

!  THIS SUBROUTINE COMPUTES THE VALUES OF THE MATRIX U COEFFICIENTS 
!  THAT RELATE AN ELEMENT WITH ITSELF 
! 
      COMMON N,L,NC(5),M,GE,XNU,INP,IPR,GE1,XNU1 
! 
      IF (I<=N/2) THEN 
           IF (J<=N/2) THEN 
                NU=XNU 
                MU=GE 
           END IF 
      END IF 
! 
      IF (I<=N/2) THEN 
           IF (J>N/2) THEN 
                 NU=XNU 
                 MU=GE 
           END IF 
      END IF 
! 
      IF (I>N/2) THEN 
           IF (J<=N/2) THEN 
                NU=XNU1 
                MU=GE1 
           END IF 
      END IF 
! 
      IF (I>N/2) THEN 
           IF (J>N/2) THEN 
                NU=XNU1 
                MU=GE1 
           END IF 
      END IF 
! 
      AX=(X2-X1)/2 
      AY=(Y2-Y1)/2 
      SR=SQRT(AX**2+AY**2) 
      DE=4*3.141592*MU*(1-NU) 
      G11=SR*((3-4*NU)*(1-ALOG(SR))+(X2-X1)**2/(4*SR**2))/DE 
      G22=SR*((3-4*NU)*(1-ALOG(SR))+(Y2-Y1)**2/(4*SR**2))/DE 
      G12=(X2-X1)*(Y2-Y1)/(4*SR*DE) 
      RETURN 
      END SUBROUTINE LOCINEC 
! 
!----------------------------------------------------------------------- 
      SUBROUTINE SLNPD(A,B,D,N,NX) 
!_______________________________________________________________________ 
! 
! SOLUTION OF LINEAR SYSTEMS OF EQUATIONS 
! BY THE GAUSS ELIMINATION METHOD PROVIDING 
! FOR INTERCHANGING ROWS WHEN ENCOUNTERING A 
! ZERO DIAGONAL COEFICIENT 
! 
! A : SYSTEM MATRIX 
! B : ORIGINALLY IT CONTAINS THE INDEPENDENT 
!     COEFFICIENTS. AFTER SOLUTION IT CONTAINS 
!     THE VALUES OF THE SYSTEM UNKNOWNS. 
! 
! N : ACTUAL NUMBER OF UNKNOWNS 
! NX: ROW AND COLUMN DIMENSION OF A 
! 
      COMMON NMUDO,LMUDO,NCMUDO(5),MMUDO,INP,IPR 
      DIMENSION B(NX),A(NX,NX) 
! 
      TOL=1.E-5 
! 
      N1=N-1 
 
      DO 100 K=1,N1 
        K1=K+1 
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        C=A(K,K) 
        IF(ABS(C)-TOL)1,1,3 
1            DO 7 J=K1,N 
! 
! TRY TO INTERCHANGE ROWS TO GET NON ZERO DIAGONAL COEFFICIENT 
! 
                    IF(ABS((A(J,K)))-TOL)7,7,5 
5                       DO 6 L=K,N 
                               C=A(K,L) 
                               A(K,L)=A(J,L) 
6                             A(J,L)=C 
                    C=B(K) 
                    B(K)=B(J) 
                    B(J)=C 
                    C=A(K,K) 
                    GO TO 3 
7                  CONTINUE 
        GO TO 8 
! 
! DIVIDE ROW BY DIAGONAL COEFFICIENT 
! 
3       C=A(K,K) 
        DO 4 J=K1,N 
4            A(K,J)=A(K,J)/C 
        B(K)=B(K)/C 
! 
! ELIMINATE UNKNOWN X(K) FROM ROW I 
! 
        DO 10 I=K1,N 
          C=A(I,K) 
          DO 9 J=K1,N 
 9       A(I,J)=A(I,J)-C*A(K,J) 
10      B(I)=B(I)-C*B(K) 
100 CONTINUE 
! 
! COMPUTE LAST UNKNOWN 
! 
        IF(ABS((A(N,N)))-TOL)8,8,101 
101       B(N)=B(N)/A(N,N) 
! 
! APPLY BACKSUBSTITUTION PROCESS TO COMPUTE REMAINING UNKNOWNS 
! 
      DO 200 L=1,N1 
        K=N-L 
        K1=K+1 
        DO 200 J=K1,N 
200     B(K)=B(K)-A(K,J)*B(J) 
! 
! COMPUTE VALUE OF DETERMINANT 
! 
      D=1. 
      DO 250 I=1,N 
250    D=D*A(I,I) 
      GO TO 300 
8    WRITE(IPR,2) K 
2    FORMAT(' **** SINGULARITY IN ROW',I5) 
      D=0. 
300 RETURN 
      END SUBROUTINE SLNPD 
! 
! 
! 
! 
!------------------------------------------------------------------------ 
      SUBROUTINE INTEREC(FI,DFI,CODE,CX,CY,X,Y,SSOL,DSOL) 
!________________________________________________________________________ 
! 
!  THIS SUBROUTINE COMPUTES THE VALUES OF THE STRESS AND DISPLACEMENT 
!  COMPONENTS AT INTERNAL POINTS 
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! 
      DIMENSION CX(1),CY(1),SSOL(1),DSOL(1) 
      DIMENSION FI(1),DFI(1),CODE(1),X(1),Y(1) 
      COMMON N,L,NC(5),M,GE,XNU,INP,IPR,GE1,XNU1 
! 
!  REARRANGE FI AND DFI ARRAYS TO STORE ALL THE VALUES 
!  OF THE DISPLACEMENT IN FI AND ALL THE VALUES OF THE TRACTIONS IN DFI 
! 
      NN=2*N 
      DO 20 I=1,NN 
! 
      IF (I<=20) THEN 
           IF (J<=20) THEN 
                NU=XNU 
                MU=GE 
           END IF 
      END IF 
! 
      IF (I<=20) THEN 
           IF (J>20) THEN 
                NU=XNU 
                MU=GE 
          END IF 
      END IF 
! 
      IF (I>20) THEN 
            IF (J<=20) THEN 
                 NU=XNU1 
                 MU=GE1 
           END IF 
      END IF 
! 
      IF (I>20) THEN 
           IF (J>20) THEN 
                NU=XNU1 
                MU=GE1 
           END IF 
      END IF 
! 
        IF(CODE(I)) 15,15,10 
10        CH=FI(I) 
             FI(I)=DFI(I) 
             DFI(I)=CH 
             GO TO 20 
15         DFI(I)=DFI(I)*MU 
20  CONTINUE 
! 
!  COMPUTE THER VALUES OF STRESSES AND DISPLACEMENTS AT INTERNAL POINTS. 
! 
      IF(L.EQ.0) GO TO 50 
        DO 40 K=1,L 
          DSOL(2*K-1)=0. 
          DSOL(2*K)=0. 
          SSOL(3*K-2)=0. 
          SSOL(3*K-1)=0. 
          SSOL(3*K)=0. 
          DO 30 J=1,N 
            IF(M-1)28,28,22 
22         IF(J-NC(1))24,23,24 
23           KK=1 
                GO TO 29 
24         DO 26 LK=2,M 
                IF(J-NC(LK))26,25,26 
25             KK=NC(LK-1)+1 
                  GO TO 29 
26         CONTINUE 
28         KK=J+1 
29       CALL EXTINEC(CX(K),CY(K),X(J),Y(J),X(KK),Y(KK),H11,H12, H21,H22,G11,G12,G22) 
            DSOL(2*K-1)=DSOL(2*K-1)+DFI(2*J-1)*G11+DFI(2*J)*G12-FI(2*J-1)*H11-FI(2*J)*H12 
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            DSOL(2*K)=DSOL(2*K)+DFI(2*J-1)*G12+DFI(2*J)*G22-FI(2*J-1)*H21-FI(2*J)*H22 
            CALL SIGMAEC(CX(K),CY(K),X(J),Y(J),X(KK),Y(KK),D111,D211,D112,D212,D122,D222,S111,S211,S112,S212,S122,S222) 
            SSOL(3*K-2)=SSOL(3*K-2)+DFI(2*J-1)*D111+DFI(2*J)*D211-FI(2*J-1)*S111-FI(2*J)*S211 
            SSOL(3*K-1)=SSOL(3*K-1)+DFI(2*J-1)*D112+DFI(2*J)*D212-FI(2*J-1)*S112-FI(2*J)*S212 
30       SSOL(3*K)=SSOL(3*K)+DFI(2*J-1)*D122+DFI(2*J)*D222-FI(2*J-1)*S122-FI(2*J)*S222 
40   CONTINUE 
50 RETURN 
      END SUBROUTINE INTEREC 
! 
! 
! 
! 
!----------------------------------------------------------------------- 
      SUBROUTINE SIGMAEC(XP,YP,X1,Y1,X2,Y2,D111,D211,D112,D212,D122, D222,S111,S211,S112,S212,S122,S222) 
!_______________________________________________________________________ 
! 
!  THIS SUBROUTINE COMPUTES THE VALUES OF THE S AND D MATRICES 
!  USING GAUSS QUADRATURE IN ORDER TO COMPUTE THE STRESSES 
!  AT ANY INTERNAL POINT 
! 
!  RA= DISTANCE FROM THE POINT TO THE GAUSS INTEGRATION POINTS 
!      ON THE BOUNDARY ELEMENTS 
!  DIST=   DISTANCE FROM THE POINT TO THE LINE TANGENT 
!          TO THE ELEMENT 
!  RD1,RD2=   DERIVATIVES OF RA 
!  ETA1,ETA2= COMPONENTS OF THE UNIT NORMAL TO THE ELEMENT 
! 
      DIMENSION XCO(4),YCO(4),GI(4),OME(4) 
      COMMON N,L,NC(5),M,GE,XNU,INP,IPR,GE1,XNU1 
      DATA GI/0.86113631,-0.86113631,0.33998104,-0.33998104/ 
      DATA OME/0.34785485,0.34785485,0.65214515,0.65214515/ 
! 
      AX=(X2-X1)/2 
      BX=(X2+X1)/2 
      AY=(Y2-Y1)/2 
      BY=(Y2+Y1)/2 
! 
      IF (I<=N/2) THEN 
            IF (J<=N/2) THEN 
                 ETA1=(Y2-Y1)/(2*SQRT(AX**2+AY**2)) 
                 ETA2=(X1-X2)/(2*SQRT(AX**2+AY**2)) 
           END IF 
      END IF 
! 
      IF (I<=N/2) THEN 
         IF (J>N/2) THEN 
               ETA1=(Y2-Y1)/(2*SQRT(AX**2+AY**2)) 
               ETA2=(X1-X2)/(2*SQRT(AX**2+AY**2)) 
         END IF 
      END IF 
! 
      IF (I>N/2) THEN 
           IF (J<=N/2) THEN 
                 ETA1=-(Y2-Y1)/(2*SQRT(AX**2+AY**2)) 
                 ETA2=-(X1-X2)/(2*SQRT(AX**2+AY**2)) 
           END IF 
      END IF 
! 
      IF (I>N/2) THEN 
           IF (J>N/2) THEN 
                ETA1=-(Y2-Y1)/(2*SQRT(AX**2+AY**2)) 
                ETA2=-(X1-X2)/(2*SQRT(AX**2+AY**2)) 
          END IF 
      END IF 
! 
      IF (I<=N/2) THEN 
           IF (J<=N/2) THEN 
                NU=XNU 
                MU=GE 
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           END IF 
      END IF 
! 
      IF (I<=N/2) THEN 
           IF (J>N/2) THEN 
                NU=XNU 
                MU=GE 
           END IF 
      END IF 
! 
      IF (I>N/2) THEN 
          IF (J<=N/2) THEN 
               NU=XNU1 
               MU=GE1 
         END IF 
      END IF 
! 
      IF (I>N/2) THEN 
           IF (J>N/2) THEN 
                NU=XNU1 
                MU=GE1 
           END IF 
      END IF 
! 
!  COMPUTE THE DISTANCE FROM THE POINT TO THE LINE OF THE ELEMENT 
! 
      IF(AX)10,20,10 
10    TA=AY/AX 
        DIST=ABS((TA*XP-YP+Y1-TA*X1)/SQRT(TA**2+1)) 
        GO TO 30 
20   DIST=ABS(XP-X1) 
! 
!  DETERMINE THE DIRECTION OF THE OUTWARD NORMAL 
! 
30 SIG=(X1-XP)*(Y2-YP)-(X2-XP)*(Y1-YP) 
      IF(SIG)31,32,32 
31  DIST=-DIST 
32  D111=0. 
      D211=0. 
      D112=0. 
      D212=0. 
      D122=0. 
      D222=0. 
      S111=0. 
      S211=0. 
      S112=0. 
      S212=0. 
      S122=0. 
      S222=0. 
! 
!  COMPUTE D AND S COEFFICIENTS 
! 
      FA=1-4*NU 
      AL=1-2*NU 
      DE=4*3.141592*(1-NU) 
      DO 40 I=1,4 
        XCO(I)=AX*GI(I)+BX 
        YCO(I)=AY*GI(I)+BY 
        RA=SQRT((XP-XCO(I))**2+(YP-YCO(I))**2) 
        RD1=(XCO(I)-XP)/RA 
        RD2=(YCO(I)-YP)/RA 
        D111=D111+(AL*RD1+2*RD1**3)*OME(I)*SQRT(AX**2+AY**2)/(DE*RA) 
        D211=D211+(2*RD1**2*RD2-AL*RD2)*OME(I)*SQRT(AX**2+AY**2)/(DE*RA) 
        D112=D112+(AL*RD2+2*RD1**2*RD2)/(DE*RA)*OME(I)*SQRT(AX**2+AY**2) 
        D212=D212+(AL*RD1+2*RD1*RD2**2)/(DE*RA)*OME(I)*SQRT(AX**2+AY**2) 
        D122=D122+(2*RD1*RD2**2-AL*RD1)/(DE*RA)*OME(I)*SQRT(AX**2+AY**2) 
        D222=D222+(AL*RD2+2*RD2**3)/(DE*RA)*OME(I)*SQRT(AX**2+AY**2) 
        S111=S111+(2*DIST/RA*(AL*RD1+NU*2*RD1-4*RD1**3)+4*NU*ETA1* 
1                 RD1**2+AL*(2*ETA1*RD1**2+2*ETA1)-FA*ETA1)*2*MU/(DE*RA**2)*OME(I)*SQRT(AX**2+AY**2) 
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        S211=S211+(2*DIST/RA*(AL*RD2-4*RD1**2*RD2)+4*NU*ETA1*RD1*RD2+ 
1                 AL*2*ETA2*RD1**2-FA*ETA2)*2*MU/(DE*RA**2)*OME(I)*SQRT(AX**2+AY**2) 
        S112=S112+(2*DIST/RA*(NU*RD2-4*RD1**2*RD2)+2*NU*(ETA1*RD2*RD1+ 
1                 ETA2*RD1**2)+AL*(2*ETA1*RD1*RD2+ETA2))*2*MU/(DE*RA**2)*OME(I)*SQRT(AX**2+AY**2) 
        S212=S212+(2*DIST/RA*(NU*RD1-4*RD1*RD2**2)+2*NU*(ETA1*RD2**2+ 
1                 ETA2*RD1*RD2)+AL*(2*ETA2*RD1*RD2+ETA1))*2*MU/(DE*RA**2)*OME(I)*SQRT(AX**2+AY**2) 
        S122=S122+(2*DIST/RA*(AL*RD1-4*RD1*RD2**2)+4*NU*ETA2*RD1*RD2+ 
1                 AL*2*ETA1*RD2**2-FA*ETA1)*2*MU/(DE*RA**2)*OME(I)*SQRT(AX**2+AY**2) 
40   S222=S222+(2*DIST/RA*(AL*RD2+2*NU*RD2-4*RD2**3)+4*NU*ETA2* 
1     RD2**2+AL*(2*ETA2*RD2**2+2*ETA2)-FA*ETA2)*2*MU/(DE*RA**2)*OME(I)*SQRT(AX**2+AY**2) 
      RETURN 
      END SUBROUTINE SIGMAEC 
! 
!----------------------------------------------------------------------- 
      SUBROUTINE OUTPTEC(XM,YM,FI,DFI,CX,CY,SSOL,DSOL) 
!_______________________________________________________________________ 
! 
!  THIS SUBROUTINE PRINTS THE VALUES OF THE DISPLACEMENTS 
!  AND TRACTIONS AT BOUNDARY NODES. IT ALSO PRINTS THE VALUES 
!  OF DISPLACEMENTS AND STRESSES AT INTERNAL POINTS 
! 
      DIMENSION XM(1),YM(1),FI(1),DFI(1) 
      DIMENSION CX(1),CY(1),SSOL(1),DSOL(1) 
      COMMON N,L,NC(5),M,GE,XNU,INP,IPR,GE1,XNU1 
! 
      WRITE(IPR,100) 
100 FORMAT(' ',79('*')//35X,'RESULTS'//2X,'BOUNDARY NODES'//6X, 'X',12X,'Y',9X,'DISPL. X',5X,'DISPL. Y',4X, 'TRACTION 
X',3X,'TRACTION Y'/) 
      DO 10 I=1,N 
10        WRITE(IPR,200) XM(I),YM(I),FI(2*I-1),FI(2*I),DFI(2*I-1),DFI(2*I) 
200 FORMAT(6(1X,E12.5)) 
! 
      IF(L.EQ.0.) GO TO 30 
          WRITE(IPR,300) 
300   FORMAT(//2X,'INTERNAL POINTS DISPLACEMENTS'//8X,'X',15X,'Y',10X, 'DISPLACEMENT X',5X,'DISPLACEMENT Y') 
         DO 20 K=1,L 
20          WRITE(IPR,400)CX(K),CY(K),DSOL(2*K-1),DSOL(2*K) 
          WRITE(IPR,350) 
350   FORMAT(//2X,'INTERNAL POINTS STRESSES'//8X,'X',15X,'Y',12X, 'SIGMA X',10X,'TAU XY',9X,'SIGMA Y') 
         DO 25 K=1,L 
25     WRITE(IPR,450) CX(K),CY(K),SSOL(3*K-2),SSOL(3*K-1),SSOL(3*K) 
400   FORMAT(2(2X,E14.7),2(5X,E14.7)) 
450   FORMAT(5(2X,E14.7)) 
30     WRITE(IPR,500) 
500   FORMAT(' ',79('*')) 
      RETURN 
      END SUBROUTINE OUTPTEC 

2. Solution of the three-dimensional micromechanics problem for the fiber reinforced bounded and 

unbounded solids. Investigation of effective local and non-local thermo-elastic properties, stress 

concentration factors, and edge effect 

 

 The general statement of the spatial fracture mechanics problem for the bounded solid with inclusions has 

been considered. The boundary integral equations method was used in order to solve the problem. Several 

fundamental solutions of the static theory of elasticity have been obtained. 

2.1 Theoretical part 

The three-dimensional problem with inclusions is considered. Generally the geometry of the problem may 

be presented in the form shown on Fig. 2.1.1. 
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Fig. 2.1.1 

 The general solution of the 3-D problem can be presented by the integral identities of the Somigliano type 

for displacements in the form 

{ } ∫∫ −+−−=
∂ V

ijj
V

ijjijji dVUbdSWuUpu )()(),()()()()( yxxyxxyxxy ,   3 ,1, =ji .    

(2.1.1) 

 

 

Notations: 

)(yiu  are components of the displacements vector in a point y  in the direction of the axis ix ; 

)(xjp  are components of the traction vector in a point x  in the direction of the axis jx ; 

)(xjb  are components of the body forces vector in a point x  in the direction of axis jx ; 

2
33

2
22

2
11 )()()()( yxyxyxrr −+−+−== yx,  is the distance between points x  and y ; 

),,( 321 xxx=x   is the point to which loading is put in; 
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),,( 321 yyy=y   is the point in which we search displacements;     VV ∂∈ \yx, . 

Tractions also can be defined by the formulas of the Somigliano type in the form 

{ } ∫∫ +−=
∂ V

ijj
V

ijiijji dVBbdSFuKpp ),()(,()(),()()( yxxyxxyxxy .                (2.1.2) 

In order to obtain boundary integral equations (BIE) from integral representations (2.1.1) and (2.1.2) we 

have to turn out points y  to the boundary V∂ . 

From integral representation (2.1.1) we obtain BIEs of the form 

{ } ∫∫ −+−−=⋅
∂ V

ijj
V

ijjijji dVUbdSWuUpu )()(,()()()()(
2
1 yxxyxxyxxy .            (2.1.3) 

From integral representation (2.1.2) we obtain BIEs of the form 

{ } ∫∫ +−=
∂ V

ijj
V

ijiijji dVKbdSFuKpp ),()(,()(),()()(
2
1 yxxyxxyxxy .               (2.1.4) 

Integral identities of the Somigliano type for displacements (2.1.1) in matrix form: 
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( )
( )
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⎥
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⎢
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⎥
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x

yxyxyx
yxyxyx
yxyxyx
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or in the vector form 
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( ) ( ) ( ) ( ) ( ){ } ( ) ( )∫∫ ⋅−+⋅+⋅−=
Ω∂ V

dVUdSWU xbyxxpyxxuyxyu ,
2
1

.                  (2.1.6) 

where         – displacements     ( )
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                 – matrix fundamental solutions 
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For tractions we have the equations in vector and matrix form: 

( ) ( ) ( ) ( ) ( ){ } ( ) ( )∫∫ ⋅+⋅−⋅=
Ω∂ V

dVKdSFK xbyxxuyxxpyxyp ,,,
2
1

.                      (2.1.7) 



STCU                   PROJECT P110 - FINAL REPORT                                    FF PAGE 133 

         
8/11/2005  

133 
 

( )
( )
( )

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( )
( )
( )

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( )
( )
( )

+
⎮⎮
⎮

⌡

⌠

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
⎮⎮
⎮

⌡

⌠

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Ω∂

Ω∂

dS
u
u
u

FFF
FFF
FFF

dS
p
p
p

KKK
KKK
KKK

p
p
p

x
x
x

yxyxyx
yxyxyx
yxyxyx

x
x
x

yxyxyx
yxyxyx
yxyxyx

y
y
y

3

2

1

333231

232221

131211

3

2

1

333231

232221

131211

3

2

1

,,,
,,,
,,,

                   

,,,
,,,
,,,

2
1

                   (2.1.8) 
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2.2 Fundamental solutions 

In order to evaluate the integral kernels )( yx −ijU , ),( yxijW , ),( yxijK , ),( yxijF  from 

expressions (2.1.1)–(2.1.8) we use the following three-dimensional fundamental Green displacement tensor 

⎪⎭

⎪
⎬
⎫

⎪⎩
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⎨
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∂
∂

∂
∂

−=−
ji

ijij x
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x
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c
U χψδ

πρ 2
2 4

1)( yx ,                                 (2.2.1) 

where ijδ  is the Kronecker symbol; 2
3

1
)( ii

i
yxr −= ∑

=
is the distance between points x  и y ; and 

      
r

yx
x
r ss

s

−
=

∂
∂

,   3,1=s . 

In the three-dimensional case functions χ  and ψ  from (2.2.1) have the following form: 

r
1

)1(4
43
ν
νψ

−
−

= ,     
)1(4

1
ν

χ
−

= .                                       (2.2.2) 

 It follows from (2.2.1), that 
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                                                 (2.2.3) 
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Partial derivatives from functions χ  and ψ   with respect to the distance r  have the form: 

0=
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Then we evaluate several partial derivatives from the tensor )( yx −ijU  with respect to the space 

coordinates, which will be used in future 
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where ρµλ )2(1 +=c  and ρµ=2c  are the velocities of the longitudinal and transverse waves, 

respectively; λ  and µ  are the Lame constants; ρ  is the density of the material. 

Kernels ),( yxijW  can be obtain from kernels ),( yx −ijU  using the differential operator ikP : 
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Then the expression for the kernel ),( yxijW  has the following form: 
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From (2.2.16) we obtain for the derivatives )( yx −
∂
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Then, with allowance for )2( 2
2

2
1 сс −= ρλ  and 2

2c ρµ = , after some transformations we have: 

,)(2
 

 
)(

2)(2                

)(
)(

1),(

2
2

2
1

⎪⎭

⎪
⎬
⎫

∂
∂

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

∂
∂

∂
∂

−
∂
∂

⎩
⎨
⎧

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

⎥⎦
⎤

⎢⎣
⎡ −
∂
∂

=

rx
rn

c
с

n
r

x
r

x
r

x
rn

r

x
rn

n
r

rr
W

j
i

jij
i

i
jijij

ψχ

δχψ
απ

x
x

x

x
x

yx

          

(2.2.17) 

where ∑
= ∂
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 is the normal derivative. 

 So, we have for kernel ),( yxijW : 
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 Expressions for integral kernels from BIEs (2.1.4) can be obtained analogously. 
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In order to evaluate the integral kernel ),( yxikF  we apply the differential operator (2.2.21) to the kernel 
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Use the expression (2.2.28) we obtain for ),( yxikF  the following: 
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And in the end we obtain: 
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(2.2.30) 

 

The fundamental solutions (2.2.1), (2.2.17), (2.2.27), (2.2.29) contain singularities of different kinds, which 

arise, when the observation point y  tends to the load point x :  

 – )( yx −ijU  has the weak singularity: 

( )
r

U ij
1

→− yx .                                             (2.2.31) 
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– ),( yxijW  and )( yx,ijK  have the singularity in the Cauchy sense: 

2

1),(
r

Wij →yx ,     2

1)(
r

Kij →yx, .                             (2.2.32) 

– )( yx,ijF  has the strong (hyper) singularity in the Hadamard sense: 

3

1)(
r

Fij →yx, .                                          (2.2.33) 

 

2.3 Equations of the boundary element method 

So, in accordance with previous results, we have following integral identities of the Somigliano type: 

∫ ∫ xx dUbd,W-uUpu
V

jjjj
V

jj  )(() )(( )((()(
2
1

1111 y-xx)yxx)y-xx)y +=
∂

,           (2.3.1) 

and 

∫ ∫ xx dKbd,F-u,Kpp
V

jjjj
V

jj  )(() )(( )((()(
2
1

1111 y-xx)yxx)yxx)y +=
∂

,           (3.3.2) 

Use the boundary element method to solve the problem under consideration. Subdivide the surface V∂  into 

N  plain polygonal elements Njj ,1 , =Ω . Then 

j

N

j
V Ω=∂

=1
∪ :   =ΩΩ ji ∩ ∅, if ji ≠ . 

and every function Vf ∂∈xx),(  will be approximately presented in the form 

Vff jq

N

j

Q

q

qj
j

∂∈≈∑∑
= =

xxxx ),()()(
1 1

ϕ  

where j
j ff Ω∈= xxx  ),()( ; points j

q Qq ,1 , =x  are the nodal points located on the boundary element 

jΩ ; and functions Vjq ∂∈xx),(ϕ  are the functions of the form of the boundary element jΩ .  

Use the constant approximation on the every boundary element, the functions Vjq ∂∈xx),(ϕ  do not 

depend on the form of the boundary element jΩ , so 

⎪⎩

⎪
⎨
⎧

Ω∈

Ω∈
=

.,0

;,1
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j
jq x
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xϕ  
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Then from systems of boundary integral equations (2.3.1) and (2.3.2), in the absence of body forces, we 

obtain the following approximately systems of equations for Nii ,1  , =y : 
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and 
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   (2.3.4)                     

where points jx  and jy  are located in the geometrical center of boundary element jΩ . 

 

2.4 Regularization of divergent integrals 

To calculate of coefficients of linear algebraic equations systems (2.3.3) and (2.4.4) it follows from 

expressions for the fundamental solutions of the elastostatic problem, that different divergent integrals   

⎮⌡
⌠ Ω

−−
=Ω

j

d
r

yxyxJ j

Ω

2211, )()(),( γ

βα
βα

γ x , 

over polygonal elements Njj ,1 , =Ω  should be regularized and calculated. 

In (Zozulya and Gonzalez-Chi 1999) it has been shown that for regularization of the divergent integrals the 

second Green theorem may be used 

,)]()()()([)()()()( ∫∫∫
Ω∂ΩΩ

∂−∂+Ω∆=Ω∆ dlggdgdg nn xxxxxxxx ϕϕϕϕ
                

 

where Ω∂  is contour of area Ω . 

 

Particularly for weakly singular integrals it has been obtained the following regular representations  
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For hypersingular kernels it has been obtained the following regular representations 
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In (Zozulya and Gonzalez-Chi 1999) it also has been presented the equations that permit the easy calculation 

of the weakly singular, the singular and the hypersingular integrals over any convex polygonal element with s  

angles.  

We ave following convenient expressions for calculation above mentioned weakly singular integrals 
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and for hypersingular integrals 
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 Note, that integrals ( )ljba ΓI ,,  are regular ones and they have following form 
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where ljΓ ,  is the l -th side of contour jΩ∂  given by the equation of the line with coefficients ll βα , ; 

2
2

2
121

2 )(),(2,1 llllllll xxCxxBА βαβαα −+=−−=+= ; 1,ln  and 2,ln  are components of 

the unit vector normal to the ljΓ , . 

Integrals ( )ljba ΓI ,,  could be easy calculated analytically or numerically, using any quadrature formulas, 

for example, the Gauss formulas. 

 

2.5. Problem for the domain with the penny-shaped inclusion, boundary integral equations and the system of 

linear equations 

In accordance with previous results, in three-dimensional case we have following integral identities of the 

Somigliano type: 
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∫ ∫ xx dUbd,W-uUpu
V

ijjijj
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2
1 y-xx)yxx)y-xx)y +=

∂
,           (2.5.1) 

and 

∫ ∫ xx dKbd,F-u,Kpp
V

ijjijj
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ijji  )(() )(( )((()(
2
1 y-xx)yxx)yxx)y +=

∂
,           (2.5.2) 

for V∂∈y  and 3,1=i . 

The integral kernels )( yx −ijU , ),( yxijW , ),( yxijK , ),( yxijF  are fundamental solutions of the 

static theory of the elasticity (See section 2.2). 

Let us consider the cylindrical domain 1V  with the central penny-shaped inclusion 2V  (see Figure 2.5.1). 

In order to solve the problem considered we use the boundary elements method with  constant approximation 

on every boundary element jΩ . To simplify the problem we use for the numerical solution the system of boundary 

integral equations (2.5.1). In the absence of body forces, we obtain the following approximately system of equations 

for Nii ,1  , =y : 
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where points jx  and jy  are located in the geometrical center of the plain boundary element jΩ , and the 

boundary surface 54321 VVVVVV ∂∪∂∪∂∪∂∪∂=∂ . 
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Figure 2.5.1 

 

In order to evaluate the integral kernels )( yx −ijU , ),( yxijW  from system (2.5.3) we use the 

corresponding results from section 2.2.  
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Kernels ),( yxijW  have been obtained from kernels )( yx −ijU  using the space derivation, and we 
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where ρµλ )2(1 +=c  is the velocity of the longitudinal wave. 

So, we have for 5421 VVVV ∂∪∂∪∂∪∂∈x :
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  where the sign ∓  depends on the orientation of the external normal unit vector, and for 3V∂∈x :
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Analogously, we have  for 5421 VVVV ∂∪∂∪∂∪∂∈x : 
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For 5421 VVVV ∂∪∂∪∂∪∂∈x :
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For 5421 VVVV ∂∪∂∪∂∪∂∈x :
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Current status of the project. 
No evidence of delays is recorded; the current technical stage of the Project may be regarded as being in a full 
accordance with schedule. 

Summary of personnel commitment. 
1. Dr. B. Maslov, Ph.D. V. Bystrov and Ph.D. M.Lavrenyuk are involved into investigation of the stress and 

strain concentration problem for n -coated ellipsoidal inclusion embedded in non-linear elastic matrix. The refined 
approach of conditional-moment method (CMM) with hypothesis of multi-particle effective field method (MFFM) 
proposed here to investigate local stress fields in inclusions with n  -layered coatings. We consider here a non linear 
elastic composite medium with stress free strains, which consists of a homogeneous matrix containing a 
homogeneous and statistically uniform random set  of coated ellipsoidal or spheroidal inclusions having all the same 
form, orientation and mechanical properties. The user interface “ Micro-mechanics of fiber reinforced bounded and 
unbounded solids: effective local and non-local thermo-elastic properties, stress concentration factors and edge 
effect” is developed, being a part of the entire program complex for numerical solution of multi-scale static problems 
of material with inclusions. The abbreviation of the program complex is MSSPMI (Multi-Scale Static Problems of 
Materials with Inclusions). The complex is developed in Lahey/Fujitsu Fortran 95 LF95 environment by use of user-
interface and graphics development tool-set Winterector Starter Kit (WiSK). Separate applied programs are 
developed by use of programming systems Delphi 6. The environment of a program complex is integrated at a level 
of a source code with applied programs which are developed in language LF95, initiates start of programs and access 
to the input and output data of the programs developed with use of other programming units. 

 
2. Dr. V. Kushch, Ph.D. V. Dutka and S. Shmegera deal with the following tasks. An accurate analytical multipole-
expansion based solution is obtained for an elastic half-space containing a finite array of inclusions in 2D (long 
fibers) as well as in 3D (spherical inclusions); the relevant computer codes are under development; the edge effect on 
micro stress concentration being investigated is expressed as the solutions that will serve as a benchmark for a 
numerical, integral equations based method. Also, the multipole expansion technique can be incorporated into a 
general scheme of the Boundary Element Method to improve its numerical efficiency. 
 
3. Dr. V. Mykhas’kiv, O. Stepanyuk and B. Stasjuk are involved in to the execution of the next milestones. The 
problem of boundary (volume) integral formulations of 3-D static and dynamic problems of inclusion interaction is 
considered. By using the general reciprocity principles and fundamental solutions, the boundary integral 
representations of elastic displacements and stresses in statically loaded solid consisting of 3-D matrix with N 
interacting volumetric inclusions are constructed. The densities of involved integrals characterize the displacements 
as well as tractions at the interfaces. To define these densities the systems of 6N boundary integral equations of the 
second kind are obtained by satisfaction of contact conditions at the interfaces. The alternative volume integral 
equations are also deduced for this type of problems resting on the effective body force distribution in the inclusion 
areas. The boundary integral formulations of 3-D problems of interaction between crack-like inhomogeneities and 
thin-walled inclusions in an elastic wave field are proposed. 
 
4. Dr. V. Zozulya, Ph.D. O. Lukin and Ph.D. O. Menshikov have developed a general approach to creation of 
powerful numerical tool for the micro-macro solution of elastostatic 2-D and 3-D problem of multiple inclusions of 
different scale interaction in micromechanics of fiber reinforced bounded and unbounded solids is made. This implies 
a creation of new and adoption of know relations of BIE and VIE for the specific problem of numerical modeling 
fiber reinforced elastic composite materials, defining analytical expressions for corresponding fundamental solutions 
and investigating their properties. 
 

Description of travels. 
As stated in the Work plan of the P-110 Project, alongside with research activities on site the appropriate 
arrangements were made to register for coming conferences to present and discuss the achievements made in the 
framework of the Project in the scientific society. The paper of Dr. B. Maslov entitled “Nonlinear overall viscoelastic 
properties of the random multi-component media” was presented at the 21st International Congress of Theoretical and 
Applied Mechanics, (ICTAM04), which took place in August 15-20, 2004 in Warsaw.  
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Information about major equipment and materials acquired, other direct costs, related to the project. 
• The purchase of equipment and all travel expenses are in full agreement with what was previously stated in the 

work plan with no overdraft occurring. 
 
• All shifts in participants’ payment and changes of equipment costs that were officially agreed during the 

reported period of working on the P-110 Project are provided in the cumulative Table Redirection below, which 
keeps all changes in chronological order. 
 
Table Redirection  

Reference 
documents &date  

(1) 

New requested category, 
or old category with  new cost 

(2) 

Requested 
cost (new)  

(3) 

Original (old) category  
(4) 

 

Estimate
d cost 
(old) 

(5) 

Redirected 
cost (6) 

old – new 

Quarter 2 
Invoice number 
1718, 27.11.2003 

4-Equipment Non-Capital #1
Pentium 4 computer, peripherals 1636 4-Equipment Non-Capital #1 

Pentium 4 computer, periphery 
1497 -139 

 4-Equipment Non-Capital #2
Pentium 4 computer, peripherals 1358 4-Equipment Non-Capital #2 

Pentium 4 computer, periphery 
1497 +139 

Total by L01 0 
 Quarter 3   
Letter of 
Redirection L03 
18 March, 2003 

3-Pers. № 5, Qtr3-Qtr8 Grants of 
Menshykov Oleksandr 0 3-Pers. № 5, Qtr3-Qtr8 Grants of 

Menshykov Oleksandr 
2100 -2100 

 3-Pers. № 10, Qtr1-Qtr8 Grants of 
Kushch Volodymyr 12100 3-Pers.  № 10, Qtr1-Qtr8 Grants of 

Kushch Volodymyr 
10000 +2100 

Total by L02 0 
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Quarter 4 
Letter of 
Redirection L04 
16 April, 2004 

3-Pers.  № 2, Qtr3-Qtr8 Grants of  
Zozulya Vladimir 

0 3-Pers.  № 2, Qtr3-Qtr8 Grants of  
Zozulya Vladimir 

9000 -9000 

 3-Pers.  № 5, Qtr4-Qtr8 Grants of  
Kushch Volodymyr 

9100 3-Pers.  № 5, Qtr4-Qtr8 Grants of  
Kushch Volodymyr 

8000 +1100 

 3-Pers.  New, Qtr4-Qtr8 Grants of  
S. Shmegera 

3944 3-Pers.  New, Qtr4-Qtr8 Grants of  
S. Shmegera 

0 +3944 

 3-Pers.  New, Qtr4-Qtr8 Grants of  
V. Dutka 

3944 3-Pers.  New, Qtr4-Qtr8 Grants of 
V. Dutka 

0 +3944 

Total by L04 -12 
Quarter 5  

Letter of 
Redirection L05 
18 July, 2004     

8-Travel.  Outside Ukraine № 2, 
Qtr3 Conference Germany, Bonn 

0 8-Travel.  Outside Ukraine № 2, 
Qtr3 Conference Germany, Bonn 

200 -200 

 8-Travel.  Inside Ukraine № 1, Qtr4 
Conference Ukraine, Lviv 

0 8-Travel.  Inside Ukraine № 1, Qtr4 
Conference Ukraine, Lviv 

55 -55 

 8-Travel.  Inside Ukraine № 2, Qtr4 
Conference Ukraine, Kyiv 

0 8-Travel.  Inside Ukraine № 2, Qtr4 
Conference Ukraine, Kyiv 

55 -55 

 8-Travel.  Outside Ukraine № 3, 
Qtr4 Conference GB, London 

0 8-Travel.  Outside Ukraine № 3, 
Qtr4 Conference GB, London 

200 -200 

 8-Travel.  Outside Ukraine № 4, 
Qtr4 Conference Greece, 
Thessaloniki 

0 8-Travel.  Outside Ukraine № 4, 
Qtr4 Conference Greece, 
Thessaloniki 

445 -445 

 8-Travel.  Outside Ukraine № 1, 
Qtr6 Conference Poland, Warsaw 

0 8-Travel.  Outside Ukraine № 1, 
Qtr6 Conference Poland, Warsaw 

500 -500 

 8-Travel.  Outside Ukraine № 2, 
Qtr8 Conference Germany, Bonn 

350 8-Travel.  Outside Ukraine № 2, 
Qtr8 Conference Germany, Bonn 

0 +350 

 8-Travel.  Outside Ukraine № 1, 
Qtr5 Conference Poland, Warsaw 

1105 8-Travel.  Outside Ukraine № 1, 
Qtr5 Conference Poland, Warsaw 

0 +1105 

Total by L05 0 
! Note. After the hard copy of this document, attach copies of technical reports (milestones), completed to the date. 
Associated files should be collected in the directory “Annual_0/Final”. > 
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Mesomechanics of bounded and unbounded composites: effective local and nonlocal elastic 

properties, stress concentration factors, and edge effect 
 
Project manager: Maslov Borys Petrovich, Dr. Sc. In Physics and Mathematics 
Phone: +380-44-454-7764, Fax: –, E-mail: maslov@inmech.kiev.ua 
Institutions: S.P. Timoshenko Institute of Mechanics 
Financing parties: USA, European Office of Aerospace Research and 
Development (EOARD) 
Operative commencement date: 01.07.2003 
Project duration:  2  years 
Project technical area: materials, composites 
Reported stage: #8 An approximate estimation of statistical moments of stress 
concentrator factors in random structure half space 
Date of submission: 15.07.2005 

 

Summary 
The new approaches in the theory of bounded and unbounded composites have been created that would be a fruitful 
tools in meso-mechanics of materials. Mathematical multi-paricle model is taken as a foundation. The methods of 
prediction the elastic and strength properties of the multi-component unidirectional composites with linear and 
physically non-linear matrix, polymer or metallic is worked out. Random structure of material is adopted. The feature 
new is that the matrix is assumed be weakened by mesoscopic damage so the effective properties are the function not 
only of the volume concentrations of the constituents but of the new material parameter reflecting the damage 
evolution mechanisms. Stress concentration in the composite laminates containing macroscopic risers of holes, 
cutouts and bolted joints type. An edge effects and adhesive bonded joints are investigated. The boundary element 
method and MEFM model is involved to obtain the solution of the theory elasticity’s problems of the first and second 
type. Model of singularities at the fiber-matrix interfaces and at the free edge of composite specimen is suggested. 
The  investigation of the stress concentration near macroscopic stress risers in the composites with initial residual 
stress in components and prediction the life-time and fatigue resistance parameters for materials with micro-structural 
damage is done. Composite media is assumed consisting of a homogeneous non-linear matrix containing a random 
set of inclusions of ellipsoidal shape. In contrast to the Finite Element Method the hybrid BIE and VIE method is 
considered in this project enables one to restrict discretisation to the inclusions only , and an inhomogeneous 
structure of inclusions presents no problem in the framework of the same numerical scheme as compared to the 
standard BIE method. A fundamental role of an edge effect yielding to the redistribution of local stresses in a 
boundary layer region is taken into account. In so doing, the eventual abandonment of so-called hypothesis of 
statistically homogeneous fields leads to a non-local coupling between statistical averages of stresses and the strains 
tensors when the statistical average stress is given by an integral of the field quantity weighted by some tensor 
function, i.e. the non-local effective elastic properties take place. Results of P-110 project give a possibility to assume 
a local nature of constitutive law of continuum mechanics at the mesoscale based in turn on the assumption that a 
field scale such as internal stress inhomogeneity infinitely exceeds a material scale.  
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Introduction 
The final stage #8 of P-110 project is accomplished. Consideration of random structure composites is performed 
using the Multi-particle Effective Field Method based on the theory of functions of random variables and Green's 
functions. Within this method one constructs a hierarchy of statistical moment equations for conditional averages of 
stresses in the inclusions; the interaction of different inclusions is taken into account. The influence of the ellipsoidal 
shape, coating structure and orientation on inclusions on the effective local and non-local properties as well as stress 
concentrator factors will be estimated. For a finite number of interacting inclusions in a half space the iteration hybrid 
BIE and VIE method is used. Combined with judicious choice of initial approximation of interacting inclusions with 
random distribution of size, shape, orientation and properties in a half space, the advanced version of Multi-particle 
Effective Field Method without effective field hypothesis is proposed. A finite-size or infinite composite solid is 
considered consisting of a homogeneous matrix containing a random set of inclusions of ellipsoidal shape (2-D and 
3-D cases). For a finite number of interacting inclusions in a half space the iteration hybrid BIE and VIE method 
combined with judicious choice of initial approximation of interacting inclusions with random distribution of size, 
shape, orientation and properties in a half space is used. A proper approximation is provided by solving the multi-
particle model problem by means of the multipole expansion technique. To study local and macro stress in a 
composite of realistic disordered structure with the full account for particle-particle interactions, the advanced multi-
particle unit cell model is applied as well. Based on theoretical analysis, the efficient numerical algorithms and 
relevant computer codes have been developed providing a detailed analysis of stress fields and macroscopic 
thermoelastic behavior of a wide class of modern composites. 
 

Technical approach 
 
1. Effective properties, local stresses and edge effects in multi-component materials with n -coated inclusions  
 
1.1 Nonlinear meso-mechanics of multi-component materials  
 
Strength and reliability of constructions built up with composite materials is largely a multi-parametrical problem, 
one of its solutions being the evaluation of stress concentration in microstructure elements and the formulation of 
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required criteria of durability which correspond to classical methods of strength theory. The service life of units made 
up of composite materials is dependent on average or maximum cyclic stresses both in matrix, inclusions and 
coatings. The number of load cycles is very important, amplitude etc. Moreover, many behavior singularities of non-
homogenous material as it was mentioned in can be given only in terms of nonlinear mechanics. More detailed 
considerations of the mechanical behavior of composite materials require the analysis of the interface between the 
reinforcement and the matrix. These interfaces may represent: weak interfacial layer due to imperfect bonding 
between the two phases; inter-diffusion or chemical interaction zones with properties varying through the thickness 
and/or along the surface at the interface between the two phases. It is well known that the overall effective properties 
of composite materials are significantly influuenced by the properties of the interfaces between the constituents. First, 
the interface controls the in situ reinforcement's, particles or fibers, strength and hence the strength of the composite. 
Secondly, defects and damage are likely to occur at the interface (for example debonding, sliding and interface 
cracks, damage etc.) and these interfacial defects control the degradation of the composite. So to evaluate more 
accurately the effective properties of a composite non-linear especially, the behavior and structures of interfaces have 
been taken into consideration. Some type of conditional statistical averages of the general integral equation is being 
done leading to an infinite system of integral equations. In order to simplify originally the exact system the main 
hypothesis of MEFM, the so-called effective field hypothesis is  applied. The effective linear and nonlinear properties 
as well as stress concentrator factors are estimated. The accuracy and efficiency of the method are examined through 
comparison with results obtained from boundary element analysis and some analytical two-dimensional solutions.  
 
The refined approach of conditional-moment method (CMM) with hypothesis of multi-particle effective field method 
(MEFM) have been proposed here to investigate local stress fields in inclusions with n  -layered coatings. We 
consider here a non linear elastic composite medium  with stress free strains, which consists of a homogeneous 
matrix containing a homogeneous and statistically uniform random set  of coated ellipsoidal or spheroidal inclusions 
having all the same form, orientation and mechanical properties. We are using the refined approach of CMM with the 
powerful hypothesis of many micro-mechanical methods, according to which each inclusion is located inside a 
homogeneous so-called effective or equivalent field. It is shown, in the framework of the effective field hypothesis, 
that from a solution of the classical linear elastic problem with zero stress free strains for the composite the relations 
for effective non linear, stored energy and average elastic strains inside the components can be found. This way one 
obtains the generalization of the known formulae, which are exact for two-component composites. The proposed 
theory is applied to the example of composites reinforced with particles with thin inhomogeneous along inclusion 
surface coatings. For a single coated inclusion the micro-mechanical approach is based on the Green function 
technique as well as on the interfacial Hill operators. 
 
2  The statistical moments of stress concentration factors in continuum estimation  
 
2.1  Multi-particle models in study the local micro stress and effective elastic moduli of bounded and 

unbounded fiber reinforced composites 
 

An accurate solutions have been obtained of the 2D and 3D elastostatics problem for a piece-homogeneous half-
space containing a finite array of non-overlapping ellipsoidal inclusions of arbitrary size, aspect ratio, location and 
elastic properties. The method combines the multipole expansion solution in terms of partial vector solutions of 
Navier equation for unbounded space with the expansion formulas and integral transforms to obtain a complete 
solution of the composite half-space problem. By exact satisfaction of all the matrix-inclusion interfaces and flat 
boundary conditions, a primary boundary-value problem stated on a complicated heterogeneous domain has been 
reduced to an ordinary well-posed set of linear algebraic equations. Properly chosen structure of general solution 
provides remarkably simple form of resolving equations and thus an efficient computational algorithm. The advanced 
structure model of composite half-plane involving a number ellipsoidal inclusions, cavities and/or cracks with an 
accurate account for the microstructure statistics and interaction effects can be considered in this way. The statistical 
moments of stress concentration factors in the random structure fibrous composite have been evaluated from the 
numerical experiments on the generalized periodic structure model being a periodicity unit cell with a number of 
inclusions. The relevant numerical code has been developed and a wide series of numerical experiments has been 
performed with 50 to 100 randomly placed inclusions per cell and statistically meaningful results were obtained for 
the statistical moments of stress concentration factors in phases and interfaces of a random structure fibrous 
composite. They include, in particular, the second moment of stress playing a fundamental role in a wide class of 
non-linear elasticity problems, damage initiation, etc. The developed method finds a variety of applications in the 
composite mechanics: so, combined with the MEFM, a micro mechanical model has been built to predict the 
thermoelastic behavior of random structure nanocomposites reinforced by the aligned silicate nanoplate clusters of 
deterministic structure. Numerical (finite element) solution has been obtained of the “solid with a coated high-aspect 
ratio inclusion” anisotropic elastostatics problem in 2D and 3D. The both platelet-like and rod-like inclusions with 
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rounded edge were studied. Parametric analysis of the problem has been performed and local as well as averaged 
stress in and around the inclusion were evaluated. Alternatively, the developed model can be thought as the 
"correlation hole" scheme in the continuum estimation of effective thermoelastic properties of composites by means 
of FEA. The developed solution has been applied to evaluate the stress concentrator factors and other relevant local 
and averaged tensors entering the general theory of the MEFM. The special emphasis was made on the problem of 
the continuum estimation of effective thermoelastic properties of nanocomposites. For a finite number of interacting 
inclusions (with the elastic properties estimated from molecular structural model) in a half space, the hybrid FEA and 
BIE method combined with the multipole expansion method and MEFM will be used for analysis of composites 
reinforced by the nanoelements with random location, orientation, and arrangement (statistically homogeneous 
clustered, and functionally graded structure).  
 

Conclusions  
The evolution of composites to its anticipated level of importance to society in general significantly depends on the 
contributions from modeling and simulation. Computational approaches are currently limited to the some kind of 
scale and cannot deal with the micro-length scales which are traditionally analyzed by a continuum mechanics 
approach. These main results of P-110 project give a possibility to assume a local nature of constitutive law of 
continuum mechanics at the mesoscale based in turn on the assumption that a field scale such as internal stress 
inhomogeneity infinitely exceeds a material scale. So evaluation of the solid mechanics approaches correctness can 
be contribute to our understanding of the bridging mechanism between the coupled scales. The results of the 
computer simulation have been executed would be incorporated in a hierarchical model of estimation of effective 
properties of composites by MEFM which is really a milestone in the progress of mathematical materials science. 
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Chapter 2

Multi-particle models in study the
local micro stress and e ective
elastic moduli of bounded and
unbounded fiber reinforced
composites: an analytical approach

2.1 E ective transverse elastic moduli of composites

at non-dilute concentration of a random field of

aligned fibers

2.1.1 Introduction

The prediction of the behavior of composite materials by the use of mechanical properties
of constituents and their microstructure is a central problem of micromechanics, which is
evidently reduced to the estimation of stress fields in the constituents. Appropriate, but
by no means exhaustive, references for the estimation of e ective elastic moduli of sta-
tistically homogeneous media are provided by the reviews Buryachenko (2001), Torquato
(2002). Accurate estimation of polynomial dependence of e ective elastic moduli L on
the small concentration of inclusions is a classical direction in micromechanics. It is
well known that for the estimation of the coe cient of the 2, it is necessary to take into
account both the radial distribution function of inclusion random locations and inclusion-
pair interactions within the composite. This problem was accurately solved by Chen and
Acrivos (1976) for the identical composites containing the isotropic identical spherical
inclusions (see for the references of di erent approximative solutions Chen and Acrivos
(1976) as well as Buryachenko, 2001). The estimation of particle-particle interaction were
based on the Bousiinesq-Papkovich stress function approach and made use of the mul-
tipole expansion technique in which the solutions are expended into series of spherical
harmonic with respect to the centers of two spheres. Numerical results were obtained for
well-steered approximation of a radial distribution function of center locations of cavi-
ties and rigid spheres. We will consider the generalization of the approach by Chen and
Acrivos (1976) for the aligned fiber composites for any ratio of the moduli of two phases.
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The particle-particle interaction will be estimated by the Kolosov-Muskhelishvili complex
potential method which is simple and powerful tool of solving a variety of the plane linear
elastic problems.
The problem we consider is an elastic equilibrium of a fibrous composite half space.

Provided the surface load and far stress field do not vary in fiber direction, the problem
can be thought as two-dimensional (2D), namely, an elastic half plane with a finite number

1 of circular inclusions. And, likewise the majority of 2D linear elasticity problems,
the powerful method of complex potentials can be applied here to obtain an accurate
analytical solution.
The surveys of the work done up to the date can be found in the book by Savin (1961)

and in the comprehensive review by Buryachenko (2001), among others. What is some-
what surprising, after more than 80 years after the pioneering work by Je ery (1920) had
been published, this problem continues to be relevant and attracts attention of investiga-
tors. Among the recent publications, we mention the papers by Kooi and Verruijt (2001)
and Verruijt (1998) who used the method of complex potentials and applied conformal
mapping to reduce the half plane with hole problem to the problem for circular ring. The
principal drawback of this approach is that, as well as in the Je ery’s solution, only a
single inclusion problem can be considered by this way. Dong et al. (2004) tested three
numerical methods on the problem for a half plane containing two circular inclusions. Al-
though only well-separated and distant from the flat boundary inclusions were considered,
discrepancy in the numerical data generated by the di erent methods compared has been
observed.
In the present section, the complete analytical solution has been obtained for a half

plane containing a finite or infinite quasi-periodic array of arbitrarily placed non-overlapping
circular inclusions. The stress state of inhomogeneous half plane is governed by the uni-
form far stress field and arbitrary load applied at the flat boundary. To get an accu-
rate solution of the problem, the Kolosov-Muskhelishvili method of complex potentials
(Muskhelishvili, 1953) has been combined with the Fourier integral transforms technique.
By exact satisfaction of all the boundary conditions, the primary boundary-value problem
is reduced to an ordinary well-posed set of linear algebraic equations and this provides
high computation e ciency and accuracy of the method developed.

2.1.2 Preliminaries

In the mesodomain with space dimensionality = 2 containing a set = ( x ) ( =
1 2 ) of identical circle aligned fibers with centers , radii , a characteristic function
is defined; (x) =

P
(x), and (x) is a characteristic function of which equals

1 at x and 0 otherwise, ( = 1 2 ). Here and in the following the upper index
( ) numbers the components, and the lower index numbers the individual inclusions. It
is assumed that all inclusions have identical mechanical and geometrical properties and
are grouped into the component (1). For the sake of definiteness, in the 2- case we will
consider a plane-strain problem.
Let stresses and strains be related to each other via the constitutive equation (x) =

M(x) (x) where M(x) (L(x)) 1 and L = ( [ ] 2 [ ]) [ ]N1 + 2 [ ]N2 N1 =
N2 = I N1; [ ] and [ ] are the bulk and shear modulus, respectively in the

space dimensionality ; and I are the unit second-order and fourth-order tensors. For
example, for the plane strain [2] = [3] [2] = [3] + [3] 3 [2] = [3] (1 + [3])(1
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[3]) [2] = [3] (1 [3]) and for the plane stress [2] = [3] [2] = 9 [3] [3] (3 [3] +
4 [3]) [2] = [3] [2] = [3] where and are the Young modulus and Poisson’s ratio,
respectively. The local strain and stress tensors satisfy the linearized strain-displacement
relations and the equilibrium equation, respectively. We consider a mesodomain , sub-
jected to the uniform traction boundary conditions 0n(x) = T(x) x where
T(x) is the traction vector at the external boundary , n is its unit outward normal,
and 0 is a given symmetric tensor, representing the macroscopic stress state.
In the matrix (0) = \ (1) and in the inclusions (1), the tensor f(x) (f = L M,

M L 1) is assumed to be constant: f(x) = f (0) for x (0) and f(x) = f (0) + f1(x) =

f (0) + f
(1)
1 for x (1); the subscript 1 denotes a jump of the corresponding quantity (e.g.

of the material tensor). The phases are perfectly bonded. All the random quantities under
discussion are statistically homogeneous, and, hence, the ensemble averaging could be
replaced by volume averaging h( )i = 1

R
( ) (x) x h( )i( ) = [ ( )] 1

R
( ) ( )(x) x

where the bar appearing above the region represents its measure, e.g. mes . The
average over component ( ) agrees with the ensemble average over an individual inclusion

( ) ( = 1 2 ) : h( )i = h( )i( ). The notation h( )i (x) at x
means the average over an ensemble realization of surrounding inclusions (but not over
the volume of a particular inclusion, in contrast to h( )i ). For the description of the
random statistically homogeneous structure of a composite material, let us introduce a
conditional probability density ( x | x ), which is a probability density to find the
-th inclusion with the center x in the domain with fixed inclusion with the centers
x . The notation ( x |; x ) denotes the case x 6= x . Of course, ( x |; x ) for
values of x lying inside the “included volumes” (called also the correlation hole) 0 ,
where 0 with characteristic functions 0 (since inclusions cannot overlap), and
( x |; x ) ( x ) at |x x | (since no long-range order is assumed); it
is assumed that 0 0 are the circles with the radii 2 ; = 1 2 ). Only if the pair

distribution function (x x ) ( x |; x ) (1) depends on |x x | it is called
the radial distribution function. ( x ) is a number density (1) of component (1) 3
and ( ) is the concentration, i.e. volume fraction, of the component ( ): (1) = h (1)i =

(1) = 1 2 ) (0) = 1 h i

2.1.3 Integral equations and e ective elastic properties

The well-known integral equations for microinhomogeneous medium (see for references
and details Buryachenko, 2001) can be recast for conditional statistical averages at the
fixed inclusion 3 x

h i(x)= h i+P( 0)h i+

Z
U(x y)

£
h | x i(y) (1 0(y))h i

¤
y (2.1)

h i(x)= h i+Q( 0)h i+

Z
(x y)

£
h | x i(y) (1 0(y))h i

¤
y (2.2)

where the tensors (y) = L1(y) (y) and (y) =M1(y) (y) are called the stress polar-
ization tensor and the strain polarization tensor, respectively, and are simply a notational
convenience. In Eq. (2.2) the integral kernel (x y) = L [I (x y) +U(x y)L ] is
the even homogeneous generalized function of the order defined by the second deriva-
tive of the Green tensor G: (x) =

£
(x)
¤
( )( )

, where the notation indicates
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symmetrization on ( ) and ( ), andG is the infinite-homogeneous-body Green’s function
of the Navier equation with an elastic moduli tensor L(0),©

L
£

G(x) + ( G(x))>
¤
2
ª
= (x). The tensors P( 0) and Q( 0) are

defined by the Eshelby tensor S( 0) for the domain 0 by the equalities S( 0) = P( 0)L(0)

and S( 0) = I M(0)Q( 0).
A constitutive equation for microinhomogeneous medium can be presented in the form

h i = L(0)h i+ h i h i =M(0)h i+ h i (2.3)

If ¿ 1, so that the interaction between fibers can be neglected, the average h i and
h i can be approximated by the tensor R h i and R h i obtained from the single-
fiber solution with applied homogeneous strain h i and the stress h i at the infinity,
respectively:

¯ (x) = R h i ¯ (x) = R h i (2.4)

where R = ¯ L
(1)
1 A R = ¯M

(1)
1 B, and the strain A = (I + PL

(1)
1 )

1 and stress

B = (I + QM
(1)
1 )

1 concentrator factors are defined by the Eshelby tensor S for the
domain by the equalities S = PL(0) and S = I M(0)Q. In such a case, (2.3) becomes
h i = L(0)h i+ R h i h i =M(0)h i+ R h i
The next step is taking the binary interaction of fibers into account that reduces, for

example, Eq. (3 31), to the following one (x )

h i = L(0)h i+ R h i+

Z h
[h (x)|; yi( ) R h i] ( y|; x )

{X 0(x )}
i
y (2.5)

Here h (x)|; yi( ) is the volume average of stress polarization tensor L1 in the inclusion
at the condition that the center of the inclusion 6= is located in the point y , and the

pair of inclusions and placed in the infinite homogeneous matrix L(0) is subjected to
the homogeneous field (called e ective field, see for referenses and details Buryachenko,
2001) which, in the framework of the considered model, coincides with the remote strain
h i. Chen and Acrivos (1976) have introduced the second summand of the integrand in
the brace as an item X 0 where 0 0(x ) = (x ) h i is a perturbation strain at the x
due to a single inclusion being at y subjected to the applied strain h i at the infinity. The
constant tensor X determined so that the integral will be absolutely convergent has been
chosen as R. Therefore the item in the brace can be uniquely determined in the term of
the solution (2.41)X

0 = R T (x y )R h i. Hereinafter T (x y ) = hU(x y)i (x) at

x 6 and T (x y ) = (¯ ) 1P for x ; T (x y ) = hT (x y )i . The proposed
approximative representation is based on the assumption that the field 0 const. in the
area . The last limitation can be easily avoided in the framework of the original scheme
by Chen and Acrivos (1976). Indeed, the item in the brace should be replaced by the
relation h 0(x)| yi( ) R h i, where h 0(x)| yi( ) is the average stress polarization
tensor hL1 i( ) in the inclusion subjected to both the homogeneous remote field h i and
the inhomogeneous field T (x y )R h i.

h i = L(0)h i+ R h i+ 2R P( 0)R h i

+

Z h
[h (x)|; yi( ) R h i] ( y|; x )

(1 0(y)){h 0(x)| yi( ) R h i}
i
y (2.6)
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where the domain 0 was extracted from the integration area analogously to Eq. (2.1). It
should be mentioned that the inhomogeneous tensor h i+T (x y )R h i (x ) has a
sense of the inhomogeneous strain field outside of the inclusion in the area , which can
be estimated by the di erent methods not just by the use of the tensors T (x y ) andR .

A new representation coincides with the old one h 0(y)| yi( ) = R T (x y )R h i+
R h i just in the framework of both the case of homogeneous ellipsoidal inclusions and
the e ective field hypothesis H1) according to which each inclusion is located in the
homogeneous e ective field (see for references and details Buryachenko, 2001)

= const (2.7)

In a similar manner, Eq. (2.32) can be reduced to the equation (x )

h i = M(0)h i+ R h i+ 2R Q( 0)R h i

+

Z h
[h (x)|; yi( ) R h i] ( y|; x )

(1 0(x)){h 0(y)| yi( ) R h i}
i
y (2.8)

where the conditional averages of the strain polarization tensors h (y)|; yi( ) and

h 0(y)| yi( ) are defined analogously to the conditional averages of the stress polariza-

tion tensors h (y)|; yi( ) and h
0(y)| yi( ), respectively, with the replacement of the

homogeneous field h i acting on two inclusions and by the homogeneous field h i. In-
troduction of new tensors proportional to the involved polarization tensors h (y)|; yi( ) =

h (y)|; yi( )h i, h
0(y)| yi( ) = h

0 (y)| yi( )h i h (y)|; yi( ) = h (y)|; yi( )h i

h 0(y)| yi( ) = h
0 (y)| yi( )h i, makes it possible to estimate from Eqs. (2.6) and

(2.8) the e ective elastic sti ness and compliances, respectively

L =L(0) + R + 2R P( 0)R +

Z h
[h (y)|; yi( ) R ] ( y|; x )

(1 0(y)){h 0 (y)| yi( ) R }
i
y (2.9)

M =M(0) + R + 2R Q( 0)R +

Z h
[h (y)|; yi( ) R ] ( y|; x )

(1 0(y)){h 0 (y)| yi( ) R }
i
y (2.10)

For the well-stirred radial distribution function (x y ) 1 at |x y | 2 , the
isotropic e ective elastic moduli L = (2 2 ) have polynomial dependance on the fiber
concentration (0) = 1+ 1 + 2

2 and (0) = 1+ 1 + 2
2. The integrals in Eqs.

(2.9) and (2.10) are absolutely convergent and, because of this, don’t depend on the the
shape of the integration domains. However, the choice of circular shape of these domains
leads to the vanishing of a contribution produced by the summands in the braces and
they can be omitted.
Let us compare Eqs. (2.9) and (2.10) with Mori-Tanaka estimations which coincide

with the variational lower bounds by Hashin (1965) when the fibers are sti er than the
matrix, and with the upper bounds when the fibers are weaker than the matrix. To ( 2),
the relevant representations by the MT method (called ( 2) approximation of the MT
method) for the e ective sti ness and compliance coincide with Eqs. (2.9) and (2.10),
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respectively, if in the last representation the integral items are neglected. The absence
of integral items in Eqs. (2.9) and (2.10) is equivalent to ignoring binary intarection of
fibers provided by the one-particle approximation h (x)|; y i h i (called also quasi-
crystalline approximation by Lax, see for references and details Buryachenko, 2001; Willis
and Acton, 1976) The authors of [15] have estimated the e ective elastic moduli to ( 2)
for the particular matrix composites through the use of an integral equation method
in the framework of the far-field solution (( )6) accompanied by the e ective field
hypothesis (2.7), where = |x y | is a distance between the centers of inclusions and
. These estimations are yielded as a limiting case from more general representations by

Buryachenko (2001) at 0; the analogous results for the fiber composites were obtained
in the work by Buryachenko et al. (2003) from where the following representations yield
at 0

L =L(0) + R + 2R P( 0)R

+

Z
R T (x y )R T (x y )R ( y |; x ) y (2.11)

M =M(0) + R + 2R Q( 0)R

+

Z
R T (x y )R T (x y )R ( y |; x ) y (2.12)

where the items analogous to ones in the braces in Eqs. (2.9) and (2.10) were omitted
due to choice of the circular integration areas in Eqs. (2.11) and (2.12). It should be
mentioned that a natural reciprocity between sti ness and compliace of e ective properties
L = (M ) 1 is not valid for the representations (2.9) and (2.10) as well as for Eqs. (2.11)
and (2.12).

2.1.4 A finite number of circular fibers in an unbounded solid

We keep the basic notations introduced by Muskhelishvili (1953) to write a general solu-
tion in the form

( 1 + 2) = ( ) 0 ( ) ( ) (2.13)

where are the Cartesian components of displacement vector u = ( 1 2) and = 1.
Also, = ( 1 + 2) is a complex variable representing the point x = ( 1 2) in the
complex plane 1 2 and is the constant factor equal to 3 4 or (3 ) (1 + )
depending on the plane strain or plane stress problem is considered, respectively. In the
polar coordinates ( ) corresponding to the Cartesian ones ( 1 2) = and the
vector u components are related by

( + ) = ( 1 + 2) (2.14)

In (2.13), the functions ( ) and ( ) are the complex potentials; what is important,
components of the corresponding to u stress tensor also can be expressed in terms of
these potentials:

11 + 22 = 8 Re [ 0 ( )] ;

22 11 + 2 12 = 4 [ 00 ( ) + 0 ( )] (2.15)
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Here, as well as in (2.13), means the complex conjugate of : = ( 1 + 2) = .
In what follows, we need also the curvilinear components of the tensor given by the
formula

( ) =
1

2

£
11 + 22 ( 22 11 + 2 12)

2
¤

(2.16)

= 2
©
2Re [ 0 ( )] [ 00 ( ) + 0 ( )] 2

ª
The specific form of and is problem-dependent: in our case, we can separate the

far field term by taking ( ) = 1 + 0 ( ) and ( ) = 2 + 0 ( ) where 1 and

2 are the complex-valued constants and 0 ( ) and 0 ( ) are the functions vanishing
at infinity. So, suppose we have the homogeneous remote strain h i prescribed. It follows
from (2.13) that

( 1 + 2) ( 1) 1 2 (2.17)

as | | . On the other hand, u u = h i x and we get immediately

1 =
h 11i+ h 22i

2 ( 1)
; 2 =

1

2
(h 22i h 11i+ 2 h 12i) (2.18)

Now, we apply the above theory to derive an accurate, asymptotically exact series
solution for an infinite solid containing a finite array of fibers perfectly bonded with the
matrix. First, we introduce the global Cartesian coordinate system 1 2 arbitrarily. In
this basis, position of the -th fiber center is given by = ( 1 2 ) = 1 2 .
Also, we shall use the variables = of local coordinate systems with origins located
in the points . To construct a solution in the multiply-connected matrix domain we make
use the generalized superposition principle (see, e.g., Kushch 1996) to write

u = u +
X
=1

U ( ) (2.19)

where u (2.17) represents the far field whereasU is the vanishing at infinity disturbance
field due to -th inhomogeneity which can be written in the form (2.13). The explicit
expression of (2.19) is

u = ( 0 1) 1 2 +
X
=1

h
0 0 ( ) 0

0 ( ) 0 ( )
i

(2.20)

where the potentials 0 and 0 are taken as a singular part of the Loran’s series

0 ( ) =
X
=1

( )

0 ( ) =
X
=1

( )

(2.21)

with
( )
and

( )
being the series expansion coe cients to be determined. It is quite

clear that such a choice of 0 and 0 provides the proper behavior of u at infinity.
On the contrary, the displacement field inside the fiber has no singularity and, thus, the

regular part only has to be retained in the Loran’s series expansion of the corresponding
complex potentials. Thus, the displacement in the -th fiber can be written as

u
( )
= ( ) 0 ( ) ( ) (2.22)
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where = ( ) ,

( ) =
X
=1

( )
( ) =

X
=1

( )
(2.23)

and
( )
and

( )
are the unknown consants. Likewise the

( )
and

( )
, they should be

chosen so that to satisfy the matrix-fiber interface boundary conditions³
u u

( )
´¯̄̄
| |=

= 0;
h
Tn (u ) Tn

³
u
( )
´i¯̄̄

| |=
= 0; (2.24)

where Tn = n is the traction vector and is the radius of -th fiber. In our case of

circular fiber, the unit normal vector n = e and Tn = ( ) .

To get a resolving set of equations for
( )
,

( ) ( )
and

( )
, we substitute the

expressions of u (2.20) and u
( )
(2.22) into the first of conditions (2.24) and equate the

corresponding power series coe cients in the opposite parts of equation. However, we need
first to represent (2.20) as a function of local variable ; note that the separate terms of
(2.19) are written in variables of di erent coordinate systems. Such a transformation uses
the following easy-to-prove formula

1

( + )
=
X
=0

( ) ( ) = ( 1)
( + 1)!

! ( 1)!
( + ) (2.25)

Taking into account = + ( = ) and applying (2.25) to all the sum
terms in (2.20) but that one with = , we get, in particular,

X
=1

( 6= )

0 ( ) =
X
=1

( 6= )

X
=1

( )

( + )
=
X
=0

( )
( ) (2.26)

where

( )
=
X
=1

( 6= )

X
=1

( ) ( ) (2.27)

The desired representation is

u ( ) = U0 + ( 0 1) 1 2 + 0 0 ( ) 0
0 ( ) 0 ( ) (2.28)

where

U0 = ( 0 1) 1 2 ;

0 ( ) =
X
=

( )

0 ( ) =
X
=

( )

(2.29)

and
Now, we substitute (2.28) and (2.22) into the first of conditions (2.24). Taking into

account that at the interface

( )
=
X
=1

( 6= )

X
=1

( ) ( + ) ( )

¸
( ) (2.30)
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= = ( )2 and ( )2 = ( )2 2 , we come, after somewhat tedious algebra,
to the infinite set of linear equations

0

( )

( )2
( )2 ( + 2)

( )
( +2)

( )
= 1 2 ( )2 ( + 2)

( )
( +2)

( )
;

( )

( )2
0

( ) ( 2)

( )2 2

( )
2 = 1

h
( 0 1) 1 +

( )
i

( )
; (2.31)

= 1 2 ; = 1 2

To satisfy the second of conditions (2.24), we recognize first that the stress in matrix
domain can be written as

11 + 22 = h 11i+ h 22i+ 8 0

X
=1

Re
£

0
0 ( )

¤
; (2.32)

22 11 + 2 12 = h 22i h 11i+ 2 h 12i+ 4 0

X
=1

£
00
0 ( ) + 0

0 ( )
¤
;

and that the formula for a traction vector Tn = ( + ) is simply the complex conju-
gate of (2.16). By substituting (2.32) into (2.16) and carrying out the transforms analogous
to those described above we obtain another set of algebraic equations

( )

( )2
+ ( )2 ( + 2)

( )
( +2) +

( )
= 1 2 +

h
( )2 ( + 2)

( )
( +2) +

( )
i
;

(2.33)
( )

( )2
( 2)

( )2 2

( )
2 +

( )
= 2 1 1 +

³
1

( )
+

( )
´
;

where = 0.
Together with (2.31), these equalities form a closed infinite set of linear algebraic

equations. We simplify it further by excluding the unknowns
( )
and

( )
and obtain

the final form of the resolving system containing the unknowns
( )
and

( )
only:

1

( )2

h
( )2 ( 2)

( )
2

( )
i
+
X
=1

( 6= )

X
=1

( ) ( ) = 1 1;

2

( )2
( )
+
X
=1

( 6= )

X
=1

½
( )

( + ) ( ) ( + 2) ( )2 +2( )

¸
(2.34)

+
( )

( )
o
= 1 1;

= 1 2 ; = 1 2 ;

where

1 =
(2 + 1)

2 [ ( 0 1) + ( 1)]
for = 1 1 =

( + )

2 ( 0 )
for 1

9



and

2 =
( 0 + 1)

2 ( 1)

After we solved (2.34) for
( )
and

( )
, we can utilize either (2.31) or (2.33) to calculate

( )
and

( )
.

It can be shown that (2.34) is the infinite linear system with normal determinant (see,
e.g., Kantorovich and Krylov, 1962) provided that the non-touching condition is satisfied
for every pair of fibers. Thus, its approximate numerical solution can be obtained by the
truncation method which assumes retaining in (2.34) the unknowns and equations with

6 . With increased, these approximate solutions converge to the exact one,
providing evaluation of the stress tensor in every point of a composite domain with any
desirable accuracy by taking su ciently large.

2.1.5 Half plane containing a finite array of fibers

Half plane with a circular hole: conductivity problem

Let us consider a half plane 2 0 containing a number of circular inclusions of holes
of radii (Fig.2.1) centered in the points with coordinates ( 1 2 ). Besides the
global Cartesian coordinate system 1 2, we introduce the local ones with origins .
Also, we introduce the following complex-valued variables

= 1 + 2 = 1 + 2 ; (2.35)

Clearly, = + where = 1 + 2 .
We consider first a steady state conductivity problem for a half plane with single hole

( = 1). The temperature field in the matrix material satisfies the Laplace equationµ
2

2
1

+
2

2
2

¶
= 0; (2.36)

as to the boundary conditions, we prescribe constant heat flux q = at the flat
boundary 2 = 0

(q · n)

¯̄̄̄
2 = 0

= ; (2.37)

whereas the hole’s surface is assumed to be thermally isolated:

(q · n)

¯̄̄̄
| | =

= 0 (2.38)

We shall solve the problem stated using the complex potentials based approach. It is
common knowledge that can be found as

= Re( ) =
1

2
( + ) ; (2.39)
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where is an analytical function of complex variable or , being the complex conjugate
of . It follows directly from the fact that the eqn (2.36) can be written in complex variables
as

2

= 0 where =
1

2

µ
1 2

¶
and =

1

2

µ
1
+

2

¶
(2.40)

To find , we make use of the superposition principle. Because the multiple-connected
domain we consider is an intersection of two infinite areas, one being a half plane and
another being a plane with circular hole, it is natural to write as a sum of appropriate
potentials. Specifically, we take in the form

= + ( ) + ( ) (2.41)

where ( = 1 + 2 is a constant) represents far field solution, whereas ( ) and
( ) are the disturbance fields caused by the hole and flat boundary, respectively. From

the physical consideration, we require both the ( ) and ( ) to vanish at infinity.

Fig.2.1 Geometry of the problem

Specific form of and has to be taken that to satisfy the boundary conditions
(2.37), ((2.38) in a simplest way. The natural choice for is singular part of the Loran
series

( ) =
X
=1
( )

(2.42)
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where are the unknown complex-valued series coe cients. On the other hand, is
taken in the form for Fourier integral:

( ) =

Z
( ) exp( ) (2.43)

with unknown complex-valued density ( ).
As a first step, we rewrite (2.37) as

2

¯̄̄̄
2 = 0

= ;

this condition is satisfied provided we put

1 = 0 2 = and
2
[ ( ) + ( )]

¯̄̄̄
2 = 0

= 0 (2.44)

The eqn (2.44) will be used to specify ( ); for this purpose, we take into account the
following Fourier integral transform (Erdeley et al., 1954)Z

exp( )

+
=

½
2 exp( ) 0; Re 0;

0 0
(2.45)

With replace to 1, to 2 and to , the inverse transform gives for 2 0

1
=

Z
exp( ) ; (2.46)

by its di erentiation, one obtains

1
=

Z
( ) exp( ) where ( ) =

½
( ) ( 1) ( 1)! for 0;

0 otherwise

(2.47)
Note that in our geometry (Fig.2.1), 2 0 at the half plane boundary; therefore, we

can use (2.47) to represent ( ) (2.42) in the form

( ) =

Z X
=1

( ) exp [ ( )] (2.48)

Substituting (2.48) and (2.43) into (2.44) gives usZ "
( )

X
=1

( ) exp( )

#
exp( 1) = 0 (2.49)

We require (2.49) to be valid for arbitrary 1; this is possible only when

( ) =
X
=1

( ) exp( ) (2.50)
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Likewise to ( ), the density ( ) 0 for 0
The remaining unknown coe cients will be utilized to satisfy the boundary condition

(2.38) at the hole = | | = , which can be rewritten as¯̄̄̄
=

= 0

the last being a consequence of more general condition¯̄̄̄
=

= 0

At the circle = = exp( ) and ( ) = ( ) exp( ) are the functions
of angular coordinate only and, thus, ( ) in the form (2.42) is alredy suitable for our
purpose. Representation of other terms of (2.41) in a form similar to (2.42) is rather
straightforward and gives

= 2 + 2 exp( ); (2.51)

( ) =

Z
( ) exp

£
( + )

¤
=
X
=0

( ) (2.52)

where

=
1

!

Z
0

( ) ( ) exp( ) = 1 2 (2.53)

For the specific form (2.50) of ( ), the expression (2.53) can be simplified greatly: we
have

=
1

!

Z
0

( )
X
=1

( ) ( 1)

( 1)!
exp

£
( )

¤
= (2.54)

X
=1

( + 1)!

!( 1)! (2 2 )( + )

where the use is made of the Euler’s integral for Gamma-function (Abramowitz and
Stegun, 1964): Z

0

+1 exp( ) =
!

The final step is substituting the expressions (2.42), (2.51) and (2.52) into the condition
= 0 ( = ); after simple algebra, we getX

=1

(
( ) exp( )

( ) +1
+ ( ) 1 exp( ) + 1 2 exp( )

)
= 0; (2.55)

where is the Kronecker’s delta. Taking account of the orthogonality property of the
complex harmonics exp( ) reduces (2.55) to a set of algebraic relations

=
( )2

!

µ
1

¶
= 1 2 ; (2.56)
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which, together with (2.54), form a closed infinite set of linear algebraic equations, from
where the unknown coe cients are to be determined. The explicit dimensionless form
of it is (e = ( ) ):

e X
=1

"
( + 1)!

! ( 1)!

µ
2 2

¶( + )
#e = 1 (2.57)

Remark 1. Expectably, the solution obtained does not contain 1 as a parameter
and is invariant to the particular choice of global coordinate system origin at the boundary

2 = 0

Half plane with a circular hole: elasticity problem

Next, we consider an equilibrium stress state of a half plane with circular hole subjected
to uniform far stress field S = { }. By analogy with above analysis (2.41), we construct
solution as a superposition of three terms,

= 1 + 2 = 0 + + (2.58)

0 being the far field solution, and are the disturbance fields induced by hole and
flat boundary, respectively. The form of the first two terms are essentially the same as
those in (Buryachenko and Kushch, 2004); here, we give a brief summary of the formulas
to be used below.
So, the basic representation of in terms of scalar complex potentials (Muskhelishvili,

1953) is

1 + 2 = 0 ( ) 0 ( ) ( ) (2.59)

where 0 = 3 4 0 for the plane strain problem and 0 is the Poisson ratio of the halfplane
material.The corresponding to (2.59) components of the stress tensor = { } are given
by the formulas (Muskhelishvili, 1953)

11 + 22 = 4 0

³
0 ( ) + 0 ( )

´
; (2.60)

22 11 + 2 12 = 4 0 [
00 ( ) + 0 ( )]

The potentials, corresponding to the uniform far field 0, are 0 ( ) = 1 and 0 ( ) =

2 (Im 1 = 0); from (2.59),

0 = ( 0 1) 1 2 (2.61)

The values of 1 and 2 are

1 =
11 + 22

2 ( 0 1)
; 2 =

1

2
( 22 11 + 2 12) (2.62)

for the uniform strain far field E = { } and

1 =
11 + 22

8 0
; 2 =

1

4 0
( 22 11 + 2 12) (2.63)

when the uniform stress far field S = { } prescribed; 0 is a shear modulus of the
halfplane’s material. In both the cases, 1 and 2 represent hydrostatic and deviatoric,
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respectively, parts of solution. Induced by hole disturbance field also is taken as (2.59),
where we put = = and = ; these potentials, by analogy with (2.42), are
given by singular part of the Loran’s series, namely

( ) =
X
=1

( ) =
X
=1

(2.64)

For the half plane disturbance solution the following, somewhat di erent from (2.59)
and (2.60) representation

= 0 ( ) ( ) 0 ( ) ( ) ; (2.65)

11 + 22 = 4 0

³
0 ( ) + 0 ( )

´
;

22 11 + 2 12 = 4 0

h
( ) 00 ( ) 0 ( ) + 0 ( )

i
;

is more appropriate. The corresponding potentials have the form analogous to (2.43):

( ) =

Z
( ) exp( ) ; ( ) =

Z
( ) exp( ) (2.66)

It is rather straightforward to show that defined by (2.65) displacement and stress fields
satisfy the elastic equilibrium equations.
To specify the problem, we assume the surface of hole to be traction-free:

Tr = e + e = 0 or, equivalently, ( )

¯̄̄̄
=

= 0 (2.67)

The following well known formula is useful for evaluation and :

= =
1

2

£
( 11 + 22) ( 22 11 + 2 12)

2
¤
; (2.68)

with account for (2.60) and (2.65), it gives an explicit representation of and in
terms of complex potentials derivatives. Similarly, the components of the traction vector
at the flat boundary 2 = 0 Tn = 12e1 + 22e2 can be written in terms of potentials
and using

= 22 + 12 =
1

2
[( 11 + 22) + ( 22 11 + 2 12) ] (2.69)

For the time being, we apply at the flat boundary the uniform load compatible with the
far stress field:

( )

¯̄̄̄
2 = 0

= 22 + 12 (2.70)

It is obvious that 0 (2.61) with 1 and 2 in the form (2.63) satisfies (2.70) and
reduces it to a homogeneous boundary condition

( + )

¯̄̄̄
2 = 0

= 0 (2.71)
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equivalent to (2.44) in the conductivity problem. We make use of (2.71) to express ( )
and ( ) in terms of the potentials (2.66). So, their substitution into the eqns (2.65) gives

0 ( ) + 0 ( ) =

Z
( )

h
( ) exp( ) ( ) exp( )

i
; (2.72)

( ) 00 ( ) 0 ( ) + 0 ( ) =

Z
( )

h
( ) ( ) + 2 2 ( )

i
exp( )

From (2.65), (2.69) and (2.72) we obtain for 2 = 0

( )

2 0
=

Z
( )

h
( ) exp( 1) + ( ) exp( 1)

i
(2.73)

On the other hand, from (2.60) and (2.69) one finds that

( )

2 0
= 0 ( ) + 0 ( ) + 00 ( ) + 0 ( ) (2.74)

=
X
=1

( )

"
+

( ) +1
+
( ) +1

( + 1)
( ) +2

#

By applying the transformation rule (2.47) to (2.74), we obtain after some algebra

( )

2 0

¯̄̄̄
2 = 0

=

Z
( ) {[ ( ) ( ) 2 2 ( )] exp( ) exp( 1) (2.75)

( ) exp( ) exp( 1)
ª

where

( ) =
X
=1

( ) ( ) =
X
=1

( ) and ( ) =
X
=1

( ) (2.76)

Substitution of (2.73) and (2.75) into (2.71) gives us the finite relations between ( ) ( )
and :

( ) = [ ( ) ( ) + 2 2 ( )] exp( ); (2.77)

( ) = ( ) exp( )

Again, ( ) = ( ) 0 for 0

Remark 2. The boundary condition in the form of eqn (2.70) is obviously not the only
choice; by analogy, we can consider in the same way the displacement or mixed-mode con-
dition at the flat boundary of half plane: moreover, these conditions can be inhomogeneous.
E.g., let (2.70) has the form

( )

¯̄̄̄
2 = 0

= 22 + 22( 1) + ( 12 + 12( 1))
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where

( 1) = 22( 1) + 12( 1) =

Z
( 1) 1 = 0;

Noteworthy, zero mean value of is required only to provide total (surface plus far field)
force balance and is not limiting in any way. In this case, the condition (2.71) has non-zero
right-hand side:

( + )

¯̄̄̄
2 = 0

=

Z
( ) exp( 1)

where ( ) is given by inverse Fourier transformZ
( ) =

1

2

Z
( 1) exp( 1) 1

It results in the additional right-hand terms, namely ( ) and ( ) in the expressions
(2.77) which, however, do not a ect flow of solution.
To obtain a resolving set of equations for and from the condition (2.67), we need

first to expand all the terms, ( 0) ( ) and ( ) into the Loran series in a vicinity
of the point . The formulas (2.63) and (2.68) give us immediately

( 0)

2 0

¯̄̄̄
=

= 2 1 2 exp( 2 ) (2.78)

The term is written initially in the local coordinates ; by substituting (2.60) into
(2.68), we get

( )

2 0

¯̄̄̄
=

= exp( )
X
=1

( )

( ) +1
©

exp( ) +
£
( 2) 2 ( )2

¤
exp( )

ª
(2.79)

Transformation of ( ) is similar to (2.52) and (2.53) although somewhat more involved.
Omitting the algebra, we give the resulting formulae to be substituted into (2.68):

11 + 22

4 0
= 0 ( ) + 0 ( ); (2.80)

22 11 + 2 12

4 0
= ( ) 00 ( ) 0 ( ) + 0 ( );

here,

( ) =
X
=0

( )
and ( ) =

X
=0

( )
(2.81)

where, analogously to (2.53),

( )
=
1

!

Z
0

( ) ( ) exp( ) (2.82)

( )
=
1

!

Z
0

( ) [ ( ) 2 2 ( )] exp( )

= 1 2
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And, likewise to (2.53), these expressions can be simplified to

( )
=

X
=1

( + 1)!

!( 1)! (2 2 )( + )
( + ) (2.83)

( )
=

X
=1

( + 1)!

!( 1)! (2 2 )( + )
+ 2 2 ( + 1) +1

where the explicit expressions of ( ) and ( ) are taken into account.
The resulting local expansion is

( )

2 0

¯̄̄̄
=

= exp( )
X
=1

( ) 1
n³

( )
+ 1

( )
´
exp( ) (2.84)

+
h

( ) ( )
( + 2) ( )2

( )
+2

i
exp( )

o
We substitute it together with (2.78) and (2.80) into (2.67) to obtain an infinite set of
equalities:

( )2
h

( ) ( )
( )2 ( + 2)

( )
+2

i
= 2 1;

( )2 ( 2) 2 + ( )2
³

( )
+ 1

( )
´
= 2 1 1;

in a pair with (2.80) they form a closed set of linear algebraic equations, from where the
unknowns and can be found and, thus, the problem has been solved.

A finite array of inclusions

Now, we consider an elastic halfplane 2 6 0 with elastic moduli 0 and 0, containing
a finite number of elastic circular inclusions of radii with elastic properties and

= 1 2 As before, the stress state of inhomogeneous halfplane is governed
by the uniform far stress field S = { } At the matrix - fiber interfaces, the conditions
of perfect bonding, or adhesion³

( )
´ ¯̄̄̄

=
= 0;

h
( ) (

( )
)
i ¯̄̄̄

=
= 0; (2.85)

= 1 2

are assumed. Here, and
( )
represent displacement in the matrix and th inclusion,

respectively. At the boundary 2 = 0 the stress boundary condition is taken in the form
(2.70).
In accordance with analysis by Buryachenko and Kushch (2004), we write solution in

the multiple-connected matrix domain as

= 0 +
X
=1

+ (2.86)
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where 0 and are given by the eqns (2.61) and (2.65)-(2.66), respectively; for we
accept (2.59) with = = and = given by

( ) =
X
=1

( )

( ) =
X
=1

( )

(2.87)

Displacement
( )
in the th fiber is given by

( )
= ( ) 0 ( ) ( ) (2.88)

( ) =
X
=0

( )

( ) =
X
=0

( )

Analysis similar to that performed in the previous subsection reduces the surface
traction condition (2.70) to

(
X
=1

+ )

¯̄̄̄
2 = 0

= 0

provided 1 and 2 are taken in the form (2.63). The following results are quite close to
those presented in the previous subsection and we give them here without derivation. So,
the density functions ( ) and ( ) in (2.66) are given now by

( ) =
X
=1

£
( )( ) ( )( ) + 2 2

( )( )
¤
exp( ); (2.89)

( ) =
X
=1

( )( ) exp( );

where

( )( ) =
X
=1

( ) ( ) ( )( ) =
X
=1

( ) ( ) and ( )( ) =
X
=1

( ) ( )

The local expansion of around the point has the form (2.66) with the potentials

given by (2.81), where the values of expansion coe cients
( )
and

( )
are now

( )
=
X
=1

X
=1

£ ¡
( ) ( )

¢
+ 2 2 +1

( )
¤
; (2.90)

( )
=

X
=1

X
=1

;

=
( 1) ( + 1)!

!( 1)!
( ) ( + )

The remaining part of solving procedure, namely, local expansion of in the vicinity
of for 6= and matching the interface conditions (2.85) resembles that described
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elsewhere (Buryachenko and Kushch, 2004) and we do not reproduce it here. The resolving
set of linear equations corresponding to (2.85) is

0

( )

( )2
( )2 ( + 2)

³
( )

2 +
( )
+2

´ ³
( )
+

( )
´
+

( )
(2.91)

= 1 2 ( )2 ( + 2)
( )
( +2)

( )
;

( )

( )2
( 2)

( )
2

( )2 2 0

³
( )
+

( )
´
+ 1

( )

= 1

h
( 0 1) 1 +

( )
i

( )
;

( )

( )2
+ ( )2 ( + 2)

³
( )

2 +
( )
+2

´
+
³

( )
+

( )
´

( )

= 1 2 +
h
( )2 ( + 2)

( )
( +2) +

( )
i
;

( )

( )2
( 2)

( )
2

( )2 2
+
³

( )
+

( )
´
+ 1

( )

= 2 1 1 +
³

1
( )
+

( )
´
;

= 1 2 ; = 1 2

In (2.91), = 0,

( )
=
X
=1

( 6= )

X
=1

( ) (2.92)

( )
=
X
=1

( 6= )

X
=1

( ) ( + ) ( )

¸
;

= ( 1)
( + 1)!

! ( 1)!
( ) ( + ) and =

By excluding the unknowns
( )
and

( )
, the system (2.91) is reduced to

1

( )2

h
( )2 ( 2)

( )
2

( )
i
+

( )
+

( )
= 1 1; (2.93)

2

( )2
( )

( + 2) ( )2
³

( )
2 +

( )
+2

´ ³
( )
+

( )
´
+

( )
= 1 2;

= 1 2 ; = 1 2 ;

where

1 =
(2 + 1)

2 [ ( 0 1) + ( 1)]
for = 1 1 =

( + )

2 ( 0 )
for 1

and

2 =
( 0 + 1)

2 ( 1)
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After we have (2.93) solved for
( )
and

( )
, the following finite relations can be utilized

to evaluate
( )
and

( )
:

( )
=
( 0 + 1)

( + )

³
( )
+

( )
´

1;

Re
( )
1 =

( 0 + 1)

(2 + 1)
Re
³

( )
1 +

( )
1 + 1

´
;

Im
( )
1 =

( 0 + 1)

( + 1)
Im
³

( )
1

( )
1

´
;

( )
=
( 0 + 1)

( 1)

( )

( )2
( )2 ( + 2)

( )
( +2) > 1;

( )
0 = 2 ( )2

³
( )
2 +

( )
2

( )
2

´
+

( )
0 +

( )
0

0

³
( )
0 +

( )
0

´
( 0 1) 1 + 2

2.1.6 Numerical study

In order to check the accuracy of the numerical method the influence of the interaction
between two identical circular inclusions (e.g. fibers) on the stress field in the inclusions is
studied. Let the elastic properties of the matrix and the inclusions be (0) = 1 (0) = 0 5
and (1) = 1000 (1) = 0 5. Let us consider a plane strain problem and the pair of
inclusions and loaded by the tension h i = (h 11i 0 0)

> along the line linked to the
inclusion centers x2 = ( 0)> and x1 = (0 0)>, is a normalized distance between
the inclusion centers. In Fig.2.2 the numerical results of the normal tractional component

= ( ) at the interface of the first fiber x = (cos( ) sin( ))> 1 obtained
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Figure 2.2: Stress concentration factor 11(z) h 11i at the fiber matrix interface z = ( 0)> vs normalized
distance : = 120 (solid curve), = 40 (dotted curve), = 20 (dot-dashed curve), = 10 (dashed
curve).

for the numbers of harmonics = 120 40 20 10 are presented at = 2 01 that
demonstrate the error 5 8% 35% and 65% of the solution with the = 40 20, and
= 10, respectively, in comparison with the solution corresponding to = 120. The

CPU times expended for the solution at a PC with a 2.0 GHz processor equal 150 sec.
and 0.5 sec. for = 120 and = 30, respectively. The error less 0 1% is provided by
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the number of harmonics = 70. It can be seen that as the fibers approach each other,
the accuracy using the Kolosov-Muskhelishvili complex potentials decreases rapidly, and a
little improvement in accuracy up to 0 1% can be provided just by significantly increasing
the number of harmonics used to = 95 at = 2 005.
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Figure 2.3: The number of harmonics providing the error less 0 1% (solid curve), 1 0% (dotted curve),

and 5 0% (dot-dashed curve) vs the normalized distance between the inclusion centers.

In a similar manner, the number of approximating harmonics providing the error less
0 1%, 1%, and 5% were estimated in Fig.2.3 as a function of the relative distances between
the fibers . Although the present numerical estimation for the local stress field in the
fiber loses accuracy (that can be protected by increasing of the number of harmonics)
when the fibers almost touch, this does not a ect the accuracy of the estimated coe cient
of the ( 2) term which, being dependent on the smoothing integral operator, is very
insensitive to the exact local stress distribution in the fibers when 2. The integrals
in Eq. (2.9) and (2.10) are estimated for the well stirred radial distribution function
(|x y |) 1 at |x y | 2 and varying number = (|x y |) presented in
Fig.2.3 and corresponding to the error 0 1%.
Similarly to Chen and Acrivos (1978) we present the coe cient 2 in the form 2 =

1 where the parameter was estimated
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Figure 2.4: The estimation of the coe cient vs the matrix Poisson ratio (0): ( 2) approximation of the
MT method (solid curves 1, 4), Eq. (2.11) (dotted curves 2, 5), Eq. (2.9) (dot-dashed curve 3, 6). The curves 1,

2, 3 are estimated for (1) = 1000, and the curves 4, 5, 6 - for (1) = 3.

in Fig. 2.4 by the di erent methods as a function of the Poisson ratio (0) for two
di erent values (1) = 1000 and (1) = 3 (another elastic moduli are fixed: (0) = 1 (1) =
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0 5). It was used the methods (2.9), (2.11) as well as the ( 2) approximation of the MT
method. As can be seen, using the accurate solution (2.9) leads to significant refinement
of the results obtained. The coe cients estimated for the di erent varying numbers
= (|x y |) corresponding to the errors 0 1% and 1 0% di er from one another

on 0 002%. In order to demonstrate the comparison of the available experimental data
with the predicting capability of the proposed method, we will consider the estimation of
the e ective elastic moduli L (4.9). Assume the matrix is epoxy resin ( (0) = 4 27 GPa
and (0) = 1 53 GPa) which contains identical circular glass fibers ( (1) = 50 89 GPa and
(1) = 35 04 GPa). In Fig.2.5 the experimental data by Lee and Mykkanen (1987)
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Figure 2.5: Estimation of the relative e ective shear modulus (0) as a function of a fiber volume fraction

. Experimental data and curves calculated by the linear approximation (solid line), by ( 2) approximation
of Mori-Tanaka method (dotted curve), by Eq. (2.11) (dot-dashed line), (2.9) (dashed line).

are compared with the estimations of the e ective shear modulus obtained by
the use of Eqs. (2.9), (2.11), by the ( 2) approximation of the MT method, which is
equivalent to the vanishing of the integral item in Eq. (2.11) as well as by the linear
approximation ( ) of Eq. (2.9). As can be seen from Fig.2.5, the use of method (2.9)
and especially by using method (2.11), slightly improves the approximation of experi-
mental data in comparison with the ( 2) approximation of the MT approach. Only an
insignificant di erence of the mentioned curved is explained by a slight variation of the
considered composite material of the parameter = 0 932 1 073 1 200 estimated by
the ( 2) approximation of the MT method, by (2.9) and by (2.11) methods, respectively
(compared with the analogous parameter in Fig.2.4 for the rigid fibers in the incom-
pressible matrix). The next improvement of the proposed method (2.9) will be considered
in forthcoming publications by the authors in the framework of the multiparticle e ec-
tive field method (MEFM, Buryachenko, 2001) with a non-well-stirred radial distribution
function (|x y |) 6=const. at |x y | 2 estimated by the authors of by Buryachenko
et al. (2003). It should be mentioned that the MT method is invariant with respect to the
radial distribution function (|x y |) in opposition to the MEFM.

Below, we give a few numerical examples to show numerical e ciency and accuracy
of the method developed in application to the composite half space problems. All the
practical calculations were performed with max = 30 where max is a max number of har-
monics retained in the truncated system (2.93). As analysis shows, this provides practical
convergence of solution and, thus, su cient accuracy of calculations: so, relative error of
stress evaluation is well below 1% for geometry where gap between the inclusions and/or
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flat boundary of half plane is 0 1 .or greater. The smaller is gap, the higher harmonics
are to be taken into account to provide accuracy of numerical data: this relationship was
studied in detail elsewhere (Buryachenko and Kushch, 2005).
The obtained solution contains an additional integral term, evaluation of which re-

quires a considerable computational e ort. It is possible, however, to avoid direct integra-
tion, at least in the case where the surface load is taken in the form (2.70). Before starting
the practical calculations, we derive some useful formulas; their application makes the so-
lution for inhomogeneous half plane comparable in e ciency with that for an unbounded
plane with inclusions. Taking into account the explicit expressions of the integral densi-
ties ( ) and ( ) (2.89) allows us, with aid of the mentioned already Euler’s integral for
Gamma-function, to find representation of the potentials (2.66) by the rational functions.
So, we have

( ) =

Z
( ) exp( ) =

X
=1

X
=1

( )

Z
( ) exp [ ( )] =

X
=1

X
=1

( )

Z
( ) exp [ ( )] =

X
=1

X
=1

( )

( )

In a similar way we get also

( ) =

Z
( ) exp( ) =

X
=1

X
=1

1

( )

"
( )

¡ ¢
( )

( )

#

Note, first, that these formulae are exact and provide the most e cient way of the dis-
placement and stress disturbance fields evaluation using the formulas (2.65). Second, and
possibly even more important, they give a clear idea of how the solution for half plane
could be constructed in rational functions only. Such a solution is, however, restricted to
the case of uniform surface load (2.70); the method of solution exposed in the present
communication is rather general and allows us to find stress field due to arbitrary surface
load.
Below, some numerical data for a series of test one- and two inclusion in half space

problems are presented. So, the plots at the Fig.2.6 show the stress 11( 1) at 2 = 0
induced by far stress 11 = 1 for five di erent values of distance between the hole
surface and flat boundary of half plane: 1 = 0 2 = ( + ) Here and below,
we put = 1 It is clearly seen considerable stress concentration in the case where hole
is close to surface. These data agree well with those reported by Dong et al. (2004) who
considered a single hole distant from the half plane edge ( = 3, solid points at the
Fig.2.6)
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Fig.2.6 Stress 11 variation along the flat boundary of half
plane with a single hole
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Fig.2.7 Stress 11 variation along the flat boundary of half plane
with a single hole

The curves at the Fig.2.7 represent 11( 1) at 2 = 0 induced by far stress 22 = 1
As calculations show, uniform load applied to the half plane surface produces very high
(up to 20 times) stress concentration for = 0 1 The solid points at this plot represent
the data obtained by FEA using the fine mesh of quadratic 6-node triangular elements.
As seen from the picture, agreement between the data compared is very good.
In the last two examples, we analyze stress 11 distribution along the negative 2 semi

axis in the half plane containing two equal circular inclusions.due to load 11 = 1 Position
of the inclusions is given by coordinates 1 = ( 1) ( + 2); 2 = ( + )
Curves at the Fig.2.8 correspond to the case of soft inclusions = 0 5; the solid points
represent data by Dong (2004) for = 1. In this case, the stress concentration shows
only slightly dependent on On the contrary, stress between the two hard inclusions

= 100 grow rapidly as the inclusions are drawn toward each other and to to the
flat boundary of half plane (Fig.2.9).
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Fig.2.8 Stress 11 variation along the 2 axis ( 1 = 0) in half
plane with two inclusions, 11 = 1
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Fig.2.9 Stress 11 variation along the 2 axis ( 1 = 0) in half
plane with two hard inclusions, 11 = 1

2.1.7 Conclusions

An accurate analytical method has been developed to solve for stress in a half plane
containing a finite array of circular inclusions, the last being a model of near-to-surface
domain of fibrous composite. The method combines technique of complex potentials with
the Fourier integral transforms to reduce a primary boundary-value elasticity problem for
a complicated multiple-connected domain to an ordinary well-posed set of linear algebraic
equations. Moreover, the resulting expression of the matrix coe cients are given by the
rational algebraic expressions and do not involve the integral terms. This provides high
numerical e ciency of the method, accuracy of which is controlled entirely by a number
of harmonics retained in the truncated series for practical calculations. Up to several
hundred of interacting inclusions can be considered in this way which makes the model
of composite half plane realistic and flexible enough to account for the micro structure
statistics. The method has been e ectively applied to evaluate the local micro stress
and macroscopic transverse elastic moduli of composites at non-dilute concentration of a
random field of aligned fibers. The numerical results are given which demonstrate accuracy
and high numerical e ciency of the developed method and can serve as a benchmark for
the approximate and numerical methods.
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2.2 The multi-particle cell model to study e ective

elastic properties and stress moments in the fi-

brous composite of random structure

2.2.1 Preliminaries

In the mesodomain containing a set = ( x ) ( = 1 2 ) of ellipsoids
with characteristic functions , centers , semi-axes ( = 1 2 3) and an aggregate

of Euler angles , a characteristic function and space dimensionality ( = 2 and
= 3 for 2- and 3- problems, respectively). are defined. It is assumed that all inclusions

have identical mechanical and geometrical properties and are grouped into the component
(1). The local strain tensor is related to the displacements u via the linearized strain—
displacement equation = 1

2
[ u+( u)>] Here denotes tensor product, and ( )>

denotes matrix transposition. The stress tensor, , satisfies the equilibrium equation: ·
= 0. Stresses and strains are related to each other via the constitutive equations
(x) = L(x) (x)+ (x) or (x) =M(x) (x)+ (x) where L(x) andM(x) L(x) 1 are
the known phase sti ness and compliance fourth-order tensors, and the common notation
for contracted products has been employed: L = . (x) and (x) L(x) (x)
are second-order tensors of local eigenstrains and eigenstresses. In particular, for isotropic
constituents the local sti ness tensor L(x) is given in terms of the local bulk modulus
(x) and the local shear modulus (x), and the local eigenstrain (x) is given in terms
of the bulk component 0(x) by the relations:

L(x) = ( 2 )
£
(x) + (1 3) (x)

¤
N1 + 2 (x)N2 (x) = 0(x) (2.94)

N1 = N2 = I N1 ( = 2 or 3); and I are the unit second-order and fourth-
order tensors, and denotes tensor product. The interrelations among the planar L[2]
and three-dimensional L[3] moduli can be found, e.g., in Torquato (2002). For example,
for plane strain [2] = [3] [2] = [3]+ [3] 3 [2] = [3] (1+ [3])(1 [3]) [2] = [3] (1

[3]) and for plane stress [2] = [3] [2] = 9 [3] [3] (3 [3]+4 [3]) [2] = [3] [2] = [3]

where and are the Young modulus and Poisson’s ratio. The local strain and stress
tensors satisfy the linearized strain-displacement relations and the equilibrium equation,
respectively. We consider a mesodomain , subjected to the uniform traction boundary
conditions.
In the matrix (0) = \ (1) and in the inclusions (1) the tensor f(x) (f = L M M

L 1) is assumed to be constant: f(x) = f (0) for x (0) and f(x) = f (0)+f1(x) = f
(0)+f

(1)
1

for x (1). The upper index of the material properties tensor put in parentheses shows the
number of the respective component. The subscript 1 denotes a jump of the corresponding
quantity (e.g. of the material tensor). The phases are perfectly bonded.
For random structure composites, we introduce a conditional probability density

( x | x ) which describes the probability density of finding the -th inclusion in
the domain with the center x , the inclusions in the domains with the centers
x 6= x being treated as fixed. We will consider statistically homogeneous media, when
all the random quantities under discussion are statistically homogeneous and, hence, the
ensemble averaging could be replaced by volume averaging

h( )i = 1

Z
( ) (x) x h( )i( ) = [ ( )] 1

Z
( ) ( )(x) x (2.95)
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where
P

(1) =
P

= 1 2 , and the bar appearing above the region represents
its measure, e.g. mes . Of course, ( x |; x ) = 0 for values of x lying
inside the “included volumes” 0 ( = 1 ), where 0 with characteristic
functions 0 (since inclusions cannot overlap). ( ) is a number density of component
(1) 3 and ( ) ( = 0 1)is the concentration, i.e. volume fraction, of the component
( ): (1) = h (1)(x)i = (1) ( = 1; = 1 2 ) (0) = 1 h i The notation h( )i
denotes the average over the component ( ) ( = 0 1). The notation h( )i(x) will be used
for the average taken for the ensemble of a statistically inhomogeneous field = ( ) in
the point x.
Only if the pair distribution function (x x ) ( x |; x ) ( ) depends

on |x x | it is called the radial distribution function (RDF). The RDFs estimated
from experimental data utilized a digital image processing technique to identify fiber
centroids and describe the stochastic structure of the material through estimation of
the statistical parameters and functions that describe the radial fiber distribution (see
Buryachenko et al., 2003). The numerical simulation was carried out by the modified
Collective Rearrangement Model (CRM) accompanied by the random shaking procedure,
creating the most homogeneous and mixed structures that do not depend on the initial
protocol of particle generations (see for detail Buryachenko et al., 2003).

2.2.2 Multi-particle cell model of a random composite

The many-particle cell models of fibrous composite layer/space/half-space, shown in
Fig.2.10a, b, represent a natural next step in the development of the ”finite array of
inclusions” model studied in Buryachenko and Kushch(2005). Namely, we consider a pe-
riodicity cell with sides and along the axes 1 and 2, respectively, containing
a certain number of aligned in 3 direction, circular in cross-section fibers. Within such
a cell, the inclusions can be placed arbitrarily but without overlapping with other fibers
and, in the case of layer, with its flat edges 2 = 0 and 2 = . Number of fibers inside
the cell may be taken large enough (say, from 50 to 100) which, as will be shown below,
provides e cient simulation of both disordered and regular structure of actual compos-
ite specimen in the framework of the same structural model. Sometimes, the geometry
shown in the Fig.2.10 is referred as a quasi-random or generalized periodic structure model
(Golovchan et al., 1993; Bystroem, 2003, among others).
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Fig.2.10a. Geometry of the composite layer cell model

This model is rather general in the sense that it can be applied equally to several prob-
lems of composite mechanics. The most straightforward application is an elastic response
of uni- or cross-directional composite parts loaded/supported on both the flat boundaries.
Next, by prescribing on one side of layer the conditions simulating a joint with dissimilar
material, we come to a ”composite layer on substrate” problem, which is also of practical
interest. By equalizing the elastic moduli of substrate material to bulk e ective moduli
of fibrous composite under study, we get probably the most advanced and realistic model
of composite half-plane. Finally, imposing the periodicity condition on the opposite sides
of layer transforms the given model into a ”cell” (more precisely, ”sandwich”) model of
bulk composite material.
In what follows, we assume that the boundary conditions at the flat boundaries are

periodic in 1 (constants, as a particular case); in this case, one can expect the stress field
to be periodic in 1 with period as well. In turn, it gives a chance to
a) reformulate the primary ”composite layer” or ”composite space” problem as a

problem for a piece-homogeneous finite-sized cell, and
b) confine finding the solution of relevant BVP to the class of periodic functions.
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Fig.2.10b. Geometry of the composite space cell model

Geometry of the cell is given by its length , height , centers of inclusions with
coordinates ( 1 2 ) and their radii . Besides the global Cartesian coordinate system

1 2, we introduce the local, inclusion-related coordinate systems 1 2 with origins
in Also, we will use the following complex-valued variables

= 1 + 2 = 1 + 2 ; (2.96)

clearly, = + where = 1 + 2 . We denote = 1+ 2 the displacement

in a matrix material with elastic moduli 0 and 0 ;
( )
, and refer to displacement

and elastic moduli, respectively, of th fiber = 1 2 At the matrix-fiber
interfaces, the adhesion conditions³

( )
´ ¯̄̄̄

=
= 0;

h
( ) (

( )
)
i ¯̄̄̄

=
= 0; (2.97)

= 1 2 ;

where = + are assumed. The stress state of a composite space is governed by
a set of far loads applied at infinity, and the stress state of a composite layer is governed
by a self-equilibrated set of load applied to the flat boundaries of layer. To be specific, we
prescribe the kinematic boundary conditions on both edge surfaces of layer, namely¯̄̄̄

2 =
= 0;

¯̄̄̄
2 = 0

= (2.98)
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It will be seen from the below analysis that the stress or mixed (say, normal displacement
plus tangential stress) boundary conditions case can be treated in a quite similar way.
In the framework of generalized cell model, a composite sample can be thought as

a set of cells. As we mentioned already, periodicity of structure results in periodicity of
relevant physical fields: i.e.,

( + ) = ( ) (2.99)

for a layer and
( + ) = ( + ) = ( ) (2.100)

for an unbounded composite is an additional to (2.97) condition to be satisfied in or-
der to provide continuity of displacement and stress fields between the adjacent cells.
One natural and highly computational cost-e cient way to match (2.100) is to find solu-
tion of the boundary-value problem in the class of periodic (rather than doubly-periodic)
functions. Likewise the 2D problem considered in Buryachenko and Kushch (2004), the
Kolosov-Muskhelishvili’s method of complex potentials seems to be most appropriate solv-
ing technique for a given problem. However, unlike the case of a finite array of inclusions,
periodicity of problem implies introducing the relevant periodic complex potentials. A
brief summary of the theory of periodic potentials is given in the next subsection; for
more details, see Golovchan et al. (1993).

2.2.3 Theoretical background: periodic potentials

Let us consider the functions defined by the convergent series

( ) =
X 1

( )
= 1 2 (2.101)

These functions are periodic in 1 with period and possess a countable set of th
order poles in the points = . For 1 6= 0 these functions are continuous and, thus,
allow expansion into the Fourier series with respect to 1 It has been found elsewhere
(Golovchan et al., 1993) that these series have the form

( ) =
X
=0

± exp (± ) 2 0; (2.102)

where = 2 and ± = 2 ( ) 1 ( )
( 1)!

; 0 =
1
2

= 1 for 1

The expressions (2.102) are particulary useful when it comes to executing the boundary
conditions at the flat boundaries 2 = . It is clear from (2.102) that ( ) 0 when
| 2| for all 1, whereas 1( )

±
10 = 2 as 2 ± Thus, the functions

(2.101) can be thought as singular periodic potentials whereas the functions exp (± )
may be considered as the regular periodic potentials for a half plane.
On the other hand, to match the matrix-fiber interface conditions (2.97), the functions

(2.101) are to be expanded into the Laurent’s power series around a certain point. These
expansions can be obtained by applying termwise the formula

1

( + )
=
X
=0

( ) ( ) = ( 1)
( + 1)!

! ( 1)!
( + ) (2.103)
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followed by a proper change of summation order. So, local expansion around the pole
= 0 is given by

( ) =
1
+
X
=0

(0) | | ; (2.104)

where

(0) =
X
6=0

( ) = [( 1) + ( 1) ]
( + 1)!

! ( 1)!
( + ) (2.105)

With the fact that ( ) =
P

=1
1 is the Euler’s -function taken into account, evaluation

of (2.105) is rather simple: first, (0) 0 for ( + ) odd. Then, (2) = 2 6 and
(4) = 4 90 (Abramovitz and Stegun, 1965); for ( + ) 6 direct summation is rapid.
Local expansion in a vicinity of regularity point can be written in the following, con-

venient for subsequent usage form:

( ) =
X
=0

( ) = + ( 6= ); (2.106)

where now

( ) =
X

( ) = ( 1)
( + 1)!

! ( 1)!
+ ( ) (2.107)

To evaluate + ( ) numerically, three following case-dependent methods are applicable:
a) direct summation provided ( + ) is su ciently large; otherwise,
b) Fourier series expansion (2.102), if | 2 | ;and, the last,
c) expansion of type (2.104) in the case | 2 |
Local expansion of ”halfplane” regular potentials exp (± ) is rather simple:

exp (± ) =
X
=0

(± )

!
(2.108)

2.2.4 Composite band

We apply first the periodic potential introduced above to solve for a ”composite band”
obtained by removing upper and bottom edges of cell (Fig.2.10a) or, equivalently, by
putting = . In fact, we study a plane containing several periodic rows of inclusions
embedded. We focus on this problem only to demonstrate the technique of reducing
the boundary-value problem to linear set of algebraic equations. In the next Section,
a composite space will be considered with the boundary conditions on the flat edges
incorporated.
The method of solution we apply is well-known method of complex potentials by

Kolosov-Muskhelishvili, with minor modifications. First, we use the following representa-
tion of displacement

= 1 + 2 = ( ) ( ) 0 ( ) ( ) (2.109)

slightly di erent of that suggested in the original Muskhelishvili’s (1953) book. It is rather
straightforward to show that these two representations are equivalent. At the same time,
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as we will see later on, presence of the multiplier ( ) = 2 2 instead of in the
bi-harmonic term simplifies the solving procedure greatly: namely, it enables using the
periodic potentials in exactly the same way we worked with the conventional potentials of
type in the ”finite array of inclusion” problem. Corresponding to (2.109) stress tensor
is given by

11 + 22 = 4 0

³
0 ( ) + 0 ( )

´
; (2.110)

22 11 + 2 12 = 4 0 [( ) 00 ( ) 0 ( ) + 0 ( )]

Following Buryachenko and Kushch (2004), we write general solution for a plane con-
taining a finite row of circular inclusions with centers =

= 0( ) +
X
=

h
0 ( ) ( ) 0 ( ) ( )

i
(2.111)

where

( ) =
X
=1

( )

( )
( ) =

X
=1

( )

( )
(2.112)

0 is a far displacement field and = Note, that in this specific case ( )
is independent of index and, thus, (2.111) can be rewritten in the form (2.109), with
potentials

( ) =
X
=

( ) ; ( ) =
X
=

( ) (2.113)

Now, we recognize that solution for a plane with an infinite row on inclusions may be
thought as a limiting case of (2.111)-(2.113) as Moreover, periodicity of solution

implies
( )
= and

( )
= for any . As easy to see, by change of summation order in

(2.112) and (2.113) we come again to solution in the form (2.109), with periodic potentials

( ) =
X
=1

( ) and ( ) =
X
=1

( ) (2.114)

Quite analogous consideration shows also that for a more general model involving several,
say , infinite rows of fibers a general solution will be

= 0( ) +
X
=1

( ) (2.115)

where
( ) = 0 ( ) ( ) 0 ( ) ( ) (2.116)

and

( ) =
X
=1

( ) ( ) ( ) =
X
=1

( ) ( ) (2.117)

In (2.117),
( )
and

( )
are the unknown complex-valued coe cients. For simplicity sake,

we take 0 to be linear:

0( ) = 0 + ( 0 1) 1

¡
2 1

¢
(2.118)
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Two governing parameters, 1 and 2, relate the far field strains in a way defined
below (eqn(2.170)); for a while, we consider them as arbitrary complex-valued constants.
Due to generic periodicity of solution, it su ces to satisfy the interface conditions

(2.97) for the fibers with centers lying inside the unit cell. We write displacement in th
fiber as

( )
= ( ) ( ) 0 ( ) ( ) (2.119)

where the potentials

( ) =
X
=0

( )
( ) ( ) =

X
=0

( )
( ) (2.120)

are the regular analytical functions.
Noteworthy,

( )
are written in local coordinates of th fiber. To match the conditions

(2.97), one has to find first a local expansion of in a vicinity of as well. For 0, such
an expansion is straightforward:

0 = 0 +
£
( 0 1) 1 exp ( )

¡
2 1

¢
exp ( )

¤
(2.121)

where

0 = 0 + ( 0 1) 1

¡
2 1

¢
(2.122)

Transformation of ( ) (2.116) is based on the formulas (2.104)-(2.107); taking
account of = , we have

X
=1

( ) =
X
=1

X
=1

( ) ( ) = (2.123)

X
=1

X
=1

( )

"
( )

+
X
=0

( ) ( )

#
=
X

( ) ( ) ;

where

( )
=
X
=1

X
=1

( ) ( ) = 0 1 2 (2.124)

Applying the same procedure to the rest of terms in (2.115) and (2.116) gives us, after
simple algebra, the following local expansion:

= 0

X
( ) ( ) ( )

X
( )

( )
( ) 1

X
( )
( ) (2.125)

where

( )
=
X
=1

X
=1

£
( ) ( ) + ( + 1)

¡ ¢
( )

+1( )
¤

(2.126)

= 0 1 2

The final step is substitution of (2.125) together with (2.119) into the interface condi-
tions (2.97). This procedure resembles that described by Buryachenko and Kushch (2004)
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and we do not reproduce it here. The final form of linear set of equations, obtained after
excluding the unknowns

( )
and

( )
is

1

( )2

h
( )2 ( 2)

( )
2

³
( )
+

( )
´i
+

( )
= 1 1; (2.127)

2

( )2
( )

( + 2) ( )2
( )

2

³
( ) ( )

´
= 1

¡
2 1

¢
;

= 1 2 ; = 1 2 ;

where

1 =

³
2 e + 1

´
2
h e ( 0 1) + ( 1)

i for = 1 1 =

³ e +
´

2
³ e

0

´ for 1 (2.128)

and

2 =

³ e
0 + 1

´
2
³ e 1

´ ; e = 0

The eqns (2.127) together with (2.125) and (2.125) form a closed infinite well-posed
set of linear equations. Based on the results by Golovchan et al. (1993), it is rather
straightforward to show that this system belongs to the class of systems with normal type
determinant (add more) and thus its solution can be obtained by the truncation method.

After we have
( )
and

( )
found from (2.127), the coe cients

( )
and

( )
are calculated

according to

( )
=

( 0 + 1)³ e +
´ ( )

1; (2.129)

Re
( )
1 =

( 0 + 1)³
2 e + 1

´ Re³ ( )
1 + 1

´
;

Im
( )
1 =

( 0 + 1)

( + 1)
Im
³

( )
1

´
;

( )
=

( )
+
( 0 + 1)³ e 1

´ ( )

( )2
( )2 ( + 2)

( )
( +2) > 1;

( )
0 = 2 ( )2

³
( )
2

( )
2

´
+

( )
0 +

( )
0

0
( )
0 ( 0 1) 1 +

¡
2 1

¢
0 ;

and, thus, the solution has been completed.
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2.2.5 Finite thickness composite layer

Local stress field

Now, we come back to the problem stated in the Section 1 (Fig.2.10a) and show how to
provide the flat edge boundary conditions (2.98). To this end, we introduce the potentials

( ) =
X
6=0

exp( ) ( ) =
X
6=0

exp( ); = 2 (2.130)

written in global variables. In accordance with the superposition principle, general solution
in the matrix domain (2.115) takes the form

= 0( ) +
X
=1

( ) + ( ) (2.131)

where is the boundary-related term, which by analogy with (??) can be expressed as

= 0 ( ) ( ) 0 ( ) ( ) (2.132)

=
X
6=0

{ 0 exp( ) + [( ) ] exp( )}

This extra term takes account of the flat boundaries provided the complex-valued Fourier
series coe cients and are chosen so that the kinematic conditions (2.98) were
satisfied. To find them, we note first that in our model 2 0 = 1 2
By definition, = + ; therefore, 2 0 when 2 = 0 (upper edge of layer) and

2 0 when 2 = (bottom one). We expand (2.131) into a Fourier series in 1 By

applying (2.102), we get for the singular part of , namely =
P
=1

( )

¯̄̄̄
2 = 0

=
X
=0

(
exp( 1)

"
0

X
=1

( )+ exp( )

#
(2.133)

+ exp( 1)
X
=1

h ¡ ¢ ( )+ ( )+
i
exp( )

)
;

¯̄̄̄
2 =

=
X
=0

exp( )

(
exp( 1)

"
0

X
=1

( ) exp( )

#

+exp( 1)
X
=1

h
2 +

¡ ¢® ( ) ( )
i
exp( )

)
;

where

( )± =
X
=1

( ) ± ( )± =
X
=1

( ) ± (2.134)

After substitution (2.132) and (2.133) into (2.98), we obtain for 0

0 = 1; 0 exp(2 ) 2 = 3; (2.135)

0 = 2; 0 (2 ) exp(2 ) = 4;

38



where

1 = 0

X
=1

( )+ exp( ); (2.136)

2 =
X
=1

h ¡ ¢ ( )+ ( )+
i
exp( );

3 =
X
=1

h
2 +

¡ ¢® ( ) ( )
i
exp( );

4 = 0

X
=1

( ) exp( )

By solving (2.135) for and , one finds

=
0 ( 3 1) + 2 2 2

¡
4 2

¢
( 0)

2 [2 exp(2 )]2
; (2.137)

= 2 exp(2 )
¡

4 2

¢
;

= 0 1; = ( 2 + ) 0;

where = exp(2 ) 1
The separate case is = 0, where we have¯̄̄̄

2 = 0

X
=1

³
0
( )
1 +

( )
1

´
= ; (2.138)

¯̄̄̄
2 =

+
X
=1

³
0
( )
1 +

( )
1

´
= 0

From here, the constant term in is

0 = +
X
=1

³
0
( )
1 +

( )
1

´
(2.139)

whereas the linear term coe cients 1 and 2 are given by

1 =
11 + 22

2 ( 0 1)
; 2 =

1

2
( 22 11 + 2 12) (2.140)

with

22 = +
2 X

=1

³
0
( )
1 +

( )
1

´
; = 0 ( 6= 2) (2.141)

Thus, and chosen in the form (2.137) and taken from (2.139) and (2.141)
satisfy the boundary conditions (2.98) accurately. It is quite evident that the described
procedure of executing the flat boundary conditions remains valid for any self-balanced
set of loads not violating the periodicity condition (2.99).
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The edge disturbance a ects the stress field around inclusions and has to be taken
into account as well by proper modification of the procedure described in the previous
Section. By applying the formula (2.108) to (2.132) one finds easily the local expansion
of in a vicinity of :

( ) = ( + ) = 0 ( ) ( ) 0 ( ) ( ) (2.142)

where

( ) =
X
=0

( )
( ) ( ) =

( )
( ) (2.143)

and

( )
=
X
6=0

( )

!
exp( ); (2.144)

( )
=

X
6=0

£ ¡ ¢ ¤ ( )

!
exp( )

Remarkably, the local expansion (2.142) is identical in form to that of the regular part
of (2.125). Hence, derivation of the resolving set of equations follows the same way as

described above, with replace
( )
to
³

( )
+

( )
´
and

( )
to
³

( )
+

( )
´
and gives (??)

with
( )
and

( )
standing in the right hand side

1

( )2

h
( )2 ( 2)

( )
2

³
( )
+

( )
´i
+

( )
= 1 1

( )
; (2.145)

2

( )2
( )

( + 2) ( )2
( )

2

³
( ) ( )

´
= 1

¡
2 1

¢
+( + 2) ( )2

( )
+2 +

( ) ( )
;

= 1 2 ; = 1 2 ;

The eqn (2.145) together with (2.124), (2.126), (2.137) and (2.144) constitute a closed set
of linear equations which can be solved by means of standard computer algebra. In doing
so, any desirable accuracy can be achieved by retaining a su cient number of harmonics
in numerical solution.
In principle, it is possible to reduce a number of variables by excluding

( )
and

( )

from (2.145). The following iterative algorithm, however, seems to be more appropriate

here. We start with the solution of (2.145 where
( )
=

( )
= 0 and 22 = ((2.127),

composite band problem), then evaluate
( ) ( )

and 22 from (2.144) and (2.141),
respectively. Next, we substitute the obtained values into the right hand side of (2.145)
and solve it again, etc. This algorithm is more flexible because the eqns (2.141) and
(2.144) may vary depending on the specific conditions assumed at the flat boundaries
of layer and, to account for them, only minor modification of numerical code has to be
made. Yet another argument in favor of the above iterative scheme is that the cell model
(Fig.2.10) with many (say, = 100) inclusions requires a set of several thousand of linear
equations to be solved. The well-known fact is that for such a large system an iterative
solver is preferable and, often, the only option.
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E ective transverse sti ness

The stress field obtained from the above solution can be integrated to estimate macro-
scopic, or e ective, sti ness defined by

h i = h i (2.146)

where h·i means averaging over the representative volume element (RVE). In the model
considered by us, RVE coincides with the periodicity cell. Moreover, it follows from (2.98)
and (2.99) that

h 22i = 22 = ; h i = 0 ( 6= 2) (2.147)

On the other hand, we can evaluate h 22i as

h 22i =
1
Z
0

22

¯̄̄̄
2 = 0

1 (2.148)

The simplest way to integrate (2.148) uses the Fourier series expansion of 22, from where
one finds easily:

h 22i

2 0
= 1 + 2 =

( 0 + 1)

2 ( 0 1)

"
+
2 X

=1

³
0
( )
1 +

( )
1

´#
(2.149)

Noteworthy,
(0)
2222 = 0 ( 0 + 1) ( 0 1) ; combining it with (2.149), we obtain re-

markably simple expression for dimensionless transverse sti ness

2222
(0)
2222

= 1 +
2 X

=1

³
0
( )
1 +

( )
1

´
(2.150)

2222in which contributions from matrix and each inclusion are clearly separated.
In a similar way, longitudinal and shear sti ness of composite layer can be evaluated.

One particular but important application of the model under study is the composite bulk,
which may be thought as a ”sandwich” made of composite layers. To simulate behavior of
composite material, we impose, instead of (2.98), the periodicity condition on the opposite
sides of layer:

( 22 + 12)

¯̄̄̄
2 =

= ( 22 + 12)

¯̄̄̄
2 = 0

(2.151)

These two problems (composite bulk and layer) coincide in the simplest case = 1
(composite with an orthogonal lattice of fibers). To simplify the problem even more,
we put = and = 1; in this case, the unit cell is a square containing a single
circular inclusion. Volume fraction of fibers = 2 or =

p
4 For a composite

given, 1111 = 2222 can be evaluated from (2.150); the corresponding numerical data for

0 = 0 3 1 = 0 2 and a series of 1 = 1 0 are given in the Table 1.

Table 2.1. E ective transverse sti ness of a fibrous composite monolayer ( = 1)
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2222
(0)
2222

= 1 = 0 1 = 10 0 1 = 1000 0

0 1.0 1.0 1.0
0.1 5.605 0.7430 1.133 1.167
0.2 3.963 0.5742 1.303 1.392
0.3 3.236 0.4495 1.519 1.702
0.4 2.802 0.3492 1.799 2.147
0.5 2.507 0.2636 2.167 2.828
0.6 2.288 0.1852 2.672 4.030
0.7 2.118 0.1075 3.421 6.990

Fig.2.11. Normalized stress 22 0 variation along the 1 axis
( 2 = 0) in a layer with circular pores

In the Figs 2.11 and 2.12, the local stress 22 0

¯̄
2=0

(2.148) distribution is shown,
from where e ect of volume content and elastic sti ness of reinforcing fibers on surface
stress concentration is clearly seen. So, near-to-surface pore reduces stress concentration;
for low porosity, this e ect is localized in a vicinity of 1 = 0 (above the pore, Fig.2.11).
For high porosity ( 0 5), when 22 at 1 = 0 is close to zero, we observe also consid-
erable stress reduction in the area between the adjacent pores. On the contrary, in the
layer reinforced by high-moduli fibers, 22 stress concentration grows together with and
reaches value of almost 30 at = 0 7 (Fig.2.12).
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Fig.2.12. Normalized stress 22 0 variation along the 1 axis
( 2 = 0) in composite layer, 1 = 1000 0

2.2.6 Quasi-random composite space

Local stress field

Now, we consider application of cell model method to come back to the quasi-random
composite space problem stated in the Section 1 (Fig.2.10b) and show how to provide the
periodicity conditions (2.100) in 2 direction, namely

( ) = ( ) where = 22 + 12 (2.152)

To this end, we follow the same way as described in the previous section: namely, we
take general solution in the matrix domain (2.115) in the form (2.131) where the
boundary-related term is given by analogy with (2.132). The complex-valued Fourier
series coe cients and in this extra term are to be chosen so that the conditions
(2.152) were satisfied.
To find them, we expand (2.131) into the Fourier series in 1 By applying (2.102), we
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get for the singular part of , namely = ( ) =
P
=1

[ ( )]

( ) =
X
=1

X
=0

©
exp( )

£
( )2

¡
+

¢
( )+ + ( )+

¤
exp( )

(2.153)

+ exp( )
( )+

exp( )
o
;

( ) =
X
=1

X
=0

exp( ) {exp( )

×
£
( )2

¡
+ 2 +

¢
( )+ + ( )+

¤
exp( )

exp( )
( )

exp( )
o
;

where

( )± =
X
=1

( ) ± ( )± =
X
=1

( ) ± (2.154)

After substitution (2.132) and (2.153) into (2.152), we obtain for 0

± =
1 X

=1

( )± exp( ); (2.155)

± =
1 X

=1

½
2
exp( )

±
¡ ¢¸

( )± + ( )±

¾
exp( );

where = exp(2 ) 1
Thus, and chosen in the form (2.155) satisfy the boundary conditions (2.152)

accurately. In turn, the edge disturbance a ects the stress field around inclusions and
has to be taken into account as well by proper modification of the procedure described in
the previous Section. By applying the formula (2.108) to (2.132) one finds easily the local
expansion of in a vicinity of :

( ) = ( + ) = 0 ( ) ( ) 0 ( ) ( ) (2.156)

where

( ) =
X
=0

( )
( ) ( ) =

( )
( ) (2.157)

and

( )
=
X
6=0

( )

!
exp( ); (2.158)

( )
=

X
6=0

£ ¡ ¢ ¤ ( )

!
exp( )
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Remarkably, the local expansion (2.156) is identical in form to that of the regular
part of (2.125). Hence, derivation of the resolving set of equations follows the same way

as described above, with replace
( )
to
³

( )
+

( )
´
and

( )
to
³

( )
+

( )
´
and gives

(2.127) with
( )
and

( )
standing in the right hand side

1

( )2

h
( )2 ( 2)

( )
2

³
( )
+

( )
´i
+

( )
= 1 1

( )
; (2.159)

2

( )2
( )

( + 2) ( )2
( )

2

³
( ) ( )

´
= 1

¡
2 1

¢
+( + 2) ( )2

( )
+2 +

( ) ( )
;

= 1 2 ; = 1 2 ;

The eqns (2.159) together with (2.124), (2.126), (2.157) and (2.158) constitute a closed
set of linear equations which can be solved by means of standard computer algebra. In
doing so, any desirable accuracy can be achieved by retaining a su cient number of
harmonics in numerical solution.
In principle, it is possible to reduce a number of variables by excluding

( )
and

( )

from (2.159). The following iterative algorithm, however, seems to be more appropriate

here. We start with the solution of (2.159) where
( )
=

( )
= 0, then evaluate

( ) ( )

from (2.158). Next, we substitute the obtained values into the right hand side of (2.159)
and solve it again, etc. The argument in favor of the above iterative scheme is that the cell
model (Fig 2.10) with many (say, = 100) inclusions requires a set of several thousand
of linear equations to be solved. The well-known fact is that for a large linear system an
iterative solver is preferable and, often, the only option.

E ective sti ness

The stress field obtained from the above solution can be integrated to estimate macro-
scopic, or e ective, sti ness tensor defined by

h i = h i (2.160)

where h·i means averaging over the representative volume element (RVE). In the model
considered by us, RVE coincides with the periodicity cell and, due to periodicity of struc-
ture,

h i =
1
Z

(2.161)

where is a cell volume. In our case, =
We assume the stress field to be macroscopically uniform which means the correspond-

ing strain E = { } = {h i} and stress S = { } = {h i} tensors were constant. To
evaluate h i we write

h i =
1

2

Z
( + ) =

1

2

Z
+
X
=1

Z
( + ) (2.162)
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Now, we apply the Gauss’ theorem to reduce the volume integrals to surface ones: taking
into account also the first of adhesion conditions (2.97) we get simple and predictable
result:

h i =
1

2

Z
( + ) (2.163)

where is the cell outer surface and are the components of unit normal vector.
Evaluation of (2.97) uses periodicity property of : so,

11 =
1
Z

1 1 =
1
Z
0

[ 1( + ) 1( )] 2 (2.164)

It follows from (2.131) and (2.118) that ( + ) ( ) = ( 0 1 2) Considering

1 = Re gives us

11 = Re ( 0 1 2) (2.165)

Similarly,

22 =
1
Z

2 2 =
1
Z
0

[ 2( + ) 2( )] 1 2 = Im ; (2.166)

based on the expansion (2.102), one finds

( + ) ( ) =
¡

0 1 1

¢ ¡
1 2

¢
2 (2.167)

and

22 = Re [( 0 2) 1 + 2 2 ] where =
X
=1

³
0
( )
1 +

( )
1

´
(2.168)

In the same way we obtain

12 = Im( 2 1 + ) (2.169)

From here we can derive the eqns determining the parameters 1 and 2:

( 0 1) 1 =
11 + 22

2
+ ; (2.170)

2 = 1 +
22 11

2
+ 12 + ;

and, thus, completing the problem statement.
Evaluating the macroscopic stress follows the same way:

h i =
1
Z

=
1

2

Z
+
X
=1

Z
(2 + ) ; (2.171)
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after some algebra, we come to

2 0
= + ( 11 + 22) +

³ e 1
´ Z

(2.172)

+

µe
1 2

0

1 2 0

¶ Z
=

Thus the problem has been reduced to evaluating the

1
Z

=
1

2 2

Z
( + ) =

1

2

2Z
0

( + ) (2.173)

On the circle = = 1+ 2 = exp( ); with account for the explicit form (2.119),
(2.120) of displacement inside the th fiber integration in (2.173) is rather trivial task,
leading to

1
Z
( 11 + 22) = 2 ( 1)Re

( )
1; (2.174)

1

2

Z
( 22 11 + 2 12) =

( )
1

( )
1 + 3

2 ( )
3

Combining (2.174) with (2.172) gives an explicit expressions of (2.160) written in compact
form as

11 + 22

2 0
=

11 + 22

( 0 1)
+ 2

µe
1 2

0

1 2 0

¶
( 1)Re

( )
1; (2.175)

22 11 + 2 12

2 0
= 22 11 + 2 12 + 2

³ e 1
´³

( )
1

( )
1 + 3

2 ( )
3

´
As a last step, we utilize the relations (2.129) to express S in terms of variables

( )
and

( )
entering the resolving system (2.127) and get the final exact, finite-form result:

11 + 22

2 0
=

11 + 22

( 0 1)
+
2 ( 0 + 1)

( 0 1)

³
( )
1 +

( )
1

´
; (2.176)

22 11 + 2 12

2 0
= 22 11 + 2 12 +

2
( 0 + 1)

( )
1

Together with (2.160), these relations provide evaluation of all components of sti ness
tensor

2.2.7 Statistical analysis of stress distributions

Let us consider realisations of a random field of inclusions with the centers x
in a unite cell = [0 ]× [0 ] with inclusions in 0s realisation. We will create two
sorts of meshes. The square meshes

y =
n
( 1 2)

> | ( 1) 1 ( 1) 2

o
(2.177)
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will be used for coordinates of matrix points where the stresses will be estimated. Here
= 1 ¿ , for example = 10. The domains of inclusions

( = 1 = 1 ) are discretized along the polar angle and the radius in the
local polar coordinate system with the centers x . Then the points

z =
n
( ) | ( 1)

2 2
( 1)

o
(2.178)

( = 1 2 ; = 1 2 ) represent the coordinates of points of the meshes of
where the stresses will be estimated that is not optimized, but is e cient. We will use
piecewise-constant elements of the meshes which are not very cost-e cient but are very
easy for computer programming, and the discretization (2.177) permits the analysis of
nonregular shape of the matrix. For simplicity estimation of integrals involved we will
utilize the basic numerical integrations formulas of Simpson’s rule for the uniform meshes
(2.177) and (2.178).
We can estimate a statistical average of stresses inside the representative inclusion

as

h i (z) =
1 X

=1

X
=1

(x + z) (2.179)

where (x + z) is a stresses in a local coordinate system connected with the inclusion
centers of the inclusion in a realisation . It is expected a fundamentally new result such
as inhomogeneity of statistical average stresses h i (z) inside the representative inclusion
.
Moreover, we can estiamate a histogram of stress distribution inside each point z of

the representative inclusion z .
The next step is estimation of a statistical average of the second moment of stresses

inside the inclusions

h i (z) =
1 X

=1

X
=1

(x + z) (x + z) (2.180)

which is not coinside with the second moment of statistical average of stresses h
i (z) 6= h i (z) h i (z). In so doing, estimation of statistical average of an arbitrary
function f (e.g. = ) is carried out by the formula

hfi +1 =
1

+ 1

h
hfi +

+1X
=1

f +1
i

(2.181)

The second moment of stresses playes a fundamental role in a wide class of nonlinear
problems such as e.g. nonlinear elasticity, failure initiation, plasticity (see for references
Buryachenko, 2001). In particular, the problem of failure initiation is based on the esti-
mation of the statistical averages of the second moments of the normal and tangential
components (see Eq. (5.7) by Buryachenko and Shoeppner, 2004)

max
n

h 2(n)i = 1 (2.182)

2(n) =
(Nn (n))(Nn (n))

( max)2
+
(Tn (n))(Tn (n))

( max)2
(2.183)
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where the interface stresses
n

(n)n can be partitioned as
n
= Nn (n) +

Tn (n), where Nn and Tn are the three-rank functions of the normal n such that

n = n =
1

2
( + ) (2.184)

where the tensors n and n symmetrical under the interchanges generate the nor-
mal = Nn (n) and tangential components = Tn (n) of the traction n with
the magnitudes k k = and k k =

p
( )2, respectively.

Therefore, our goal is estimation of h(Nn (n))(Nn (n))i and h(Tn (n))(Tn (n))i
(and their histogram) and comparion of its with
h(Nn (n))i h(Nn (n))i and h(Tn (n))i h(Tn (n))i , respectively.
In a similar manner the statistical averages of both stresses and their second moments

can be estimated over the whole matrix

h i(0) =
1
0

X
=1

0X
=1

(y) (2.185)

h i(0) =
1
0

X
=1

0X
=1

(y) (y) (2.186)

where 0 is a number of mesh nodes (2.177) belonging to the matrix and y passes though
all these nodes in the global coordinate system connected with . We can also plot the
histogram distributions of the first and second moments of stresses in the matrix. In more
general sense for any nonlinear function f of (e.g. f = (z) (y) (z) (z) (y)
(y) 2(n)), we can estimate a histogram of f which can be used e.g. for estimetion of a
measure of the part of the matrix where an ejection of the random process f takes place:
|f | (see Lipton, 2003).
It should be mentioned that all averages mentioned above are estimated for three

di erent remote stresses h i = (1 0 0)> (0 1 0)> and (0 0 1)>. Therefore, the stresses
presented in Eqs. (2.179)-(2.184) in reality have a dimensions 3 × 3 rather than 3 (in
Voight notations). So, the e ective complience can be estimated as

M =M(0) + (M(1) M(0))
1

¯

Z
h i (z) z (2.187)

It is interesting that the second moment of stresses averaged over the volume of the phase
can be estimated exactly if the functional dependance M M( ) ( = 0 1) is known
(see for details Section 5.1 by Buryachenko, 2001)

h i( ) =
1
( )

M

M( )
h i h i (2.188)

For isotropic materials M( ) = (3 ( ) 2 ( )), the formula (2.188) can be recast for the
invariants = tr 3 and eq =

p
2 : 3 ( = N2 : )

h 2 i( ) =
M

9 ( )
:: (h i h i) (2.189)

h 2
eqi

( ) =
M

3 ( )
:: (h i h i) (2.190)
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Thus, h 2 i( ) and h 2
eqi

( ) can be estimated by two di erent methods. The first one is based
on direct estimations of the second moments of stresses averages over the phase volumes,
see Eqs. (2.180) and (2.186). The second method is a perturbation method (2.189) and
(2.190).

2.2.8 Numerical study

Three main parameters governing convergence and accuracy of results in the below sta-
tistical analysis are
a) number of harmonics retained in the numerical solution;
b) number of inclusions with centers inside the periodicity unit cell;
c) number of random structure realizations taken for averaging.
Obviously, all these numbers should be taken su ciently large to provide the reliable

numerical results. On the other hand, computational e ort of such a study scales as
( ) , where = 2 or 3 depending on the linear solver type (iterative or direct)
utilized and, to avoid exceedingly large total computational time, the reasonably high
values of and are to be taken. The motivated choice can be made based on
convergence rate study of solution with each separate parameter increased.
First, we evaluate number of harmonics we need to keep in the numerical solution

in order to get statistically meaningful results. Specifically, we consider uniaxial tension

22 = 1 of a composite with volume fraction of equal-sized fibers = 0 5 The elastic
properties of composite phases are 0 = 0 3 = 0 2 and = 100 0 = 1 2
In the Fig.2.13, 22 radial variation in 2 direction (0 = 2) is shown
averaged over = 50 configurations of = 50 inclusions inside the cell. As seen from
the Fig.2.13, the runs with = 20 and = 30 give practically coinciding numbers
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Fig.2.13. Convergence of the fiber interface stress with number
of inclusions inside the cell increased
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Fig.2.14. Convergence of the fiber interface stress with number
of inclusions inside the cell increased

The next issue is a number of particles inside the unit cell. In the Fig.2.14, the inter-
face stress variation for 2 2 is shown averaged over = 50 configurations
of = 1 (dashed lines), = 10 (open circles), = 20 (solid circles) and = 50 (solid
lines). In the case = 1 we have a simple square lattice of inclusions which is essen-
tially deterministic structure. In the last two cases, stress values are practically the same;
smoothness and symmetry of curves for = 50 is yet another reliability confirmation of
the results being obtained
The data in the Table below are the averaged over 50 configurations mean stress

inside the fibers given in the form h i 0 = ± . The standard deviation

( ) is calculated as follows: = where = 1
( 1)

P
=1(

e)2 is

the sample size and e is the mean: e = 1
P

=1 The standard error of the mean

( ) is calculated as follows: = Assuming far loading is the uniaxial
macroscopic strain = 1 these data represent as well the e ective elastic moduli of a
fibrous composite: = h i

Table 2.2. E ective sti ness of a fibrous composite: convergence and isotropy checking
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h 11i
0
1111 h 22i

0
2222 h 12i

0
1212

= 20 11 = 1 2 685± 0 016 2 242± 0 012 0 009± 0 012
= 20 22 = 1 2 242± 0 011 2 659± 0 016 0 009± 0 012
= 50 11 = 1 2 683± 0 011 2 270± 0 008 0 006± 0 008
= 50 22 = 1 2 271± 0 008 2 671± 0 010 0 005± 0 009

It is seen from the Table 2.2 that the values obtained for = 20 and = 50 are rather
close which clearly indicates convergence of solution with respect to . These data can
also be useful in testifying isotropy of the random structure model. Ideally, one must get
for macroscopically isotropic composite material h 11i | 11=1 = h 22i | 22=1 h 22i | 11=1 =
h 11i | 22=1 and h 12i 0 As calculations show, already for = 20 the anisotropy degree
is less than 1% and demonstrates a clear tendency to decrease with growth of .
The next figure shows how number of realizations e ects the results of statistical

averaging. Here, the normalized e ective Young modulus 0 is shown averaged over
di erent sample size. The open circles correspond to = 20 whereas the solid circles
correspond to = 50 The conclusion can be made based on these observations that in
both the cases = 50 provides practically convergent solution. This value together with
= 25 and = 50 was taken for the subsequent computations.

Fig.2.15. Convergence of e ective Young modulus of a
fibrous composite ( = 0 5) with number of realizations

increased
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In the Fig.2.16, the statistical average of stress 22 radial distribution (0 =
0) is shown. The fundamentally new result we observe here is an inhomogeneity of sta-
tistical average stresses h 22i ( ) inside the representative inclusion. The inhomogeneity
degree is growing up with volume fraction of fibers increased; at the same time, abso-
lute stress value is a decaying function of which qualitatively agrees with most existing
theories.

Fig.2.16. stress s22 radial variation as a function of volume
fraction of fibers

In Fig.2.17, estimation of a statistical average of the second moment of stress h 2
22i ( )

inside the inclusions is shown. It is clearly seen that it is not coincide with the second
moment of statistical average of stresses: h i ( ) 6= ( )

®
( )
®
As the calcu-

lations show, di erence between the values compared grows up with c; likewise h 22i ( ),
they are essentially inhomogeneous inside the fiber.
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Fig.2.17. Second moment of stress 22 radial variation as a
function of volume fraction of fibers

The second moment of stresses plays a fundamental role in a wide class of nonlinear
problems such as e.g. nonlinear elasticity, failure initiation, plasticity (see for references
Buryachenko, 2001). In particular, the problem of failure initiation is based on the esti-
mation of the statistical averages of the second moments of the normal and tangential
components (Buryachenko and Shoeppner, 2004). In the Fig.2.18., the second moments

h 2 i and 2
®

are compared with
³
h i

´2
and

³
2
® ´2

, respectively. In this

example, = 0 5; the plot shows their variation along the matrix-fiber interface =
2 2.

55



Fig.2.18. Second moment of interface stress variation

2.2.9 Conclusions

An accurate analytical method has been developed to solve for stress in a plane an infi-
nite quasi-random array of circular inclusions, the last being a ”cell model” of non-ordered
fibrous composite. The method combines technique of periodic complex potentials with
the Fourier series expansion to reduce a primary boundary-value elasticity problem for a
complicated multiple-connected domain to an ordinary well-posed set of linear algebraic
equations. It provides high numerical e ciency of the method, accuracy of which is con-
trolled entirely by a number of harmonics in the truncated series retained for practical
calculations. Up to several hundred of interacting inclusions can be considered in this way
which makes the model su ciently realistic and flexible to account for the micro struc-
ture statistics anh this able to model geometry and elastic behavior of stochastic structure
composite. The numerical results are given for the statistical average of local phase and
interface stress and their second moments.
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Chapter 5

The high aspect-ratio rod-like
inclusion: Eshelby-type problem by
the Finite Element Method

5.1 The problem statement

The linear elasticity problem under study is a stress field in and around the inclusions
with extremely high (of order 1000) ratio of the major and minor dimensions, say, slender
rods, platelets, etc. We consider a single isotropic inclusion, embedded in an infinite
solid, or matrix. The displacement u and normal fraction T = ·n , where is a stress
tensor, = L + and = 1

2
[ u+ ( u)>], are assumed to be continuous through the

matrix-inclusion interface:
[[u]] = 0; [[ · n]] = 0 (5.1)

Here, [[ ]] means a jump of the function through the interface; so, [[u]] = u(0) u(1),
where the upper indices ”0” and ”1” refer to matrix and inclusion, respectively. Also,
L = L ( ) is the isotropic sti ness tensor, with the shear modulus and Poisson’s ratio
: = 0 = 0 in the matrix and = 1 = 1 in the inclusion.
The stress in the piece-homogeneous solid is induced by the the far stress field 0 or,

what is equivalent in the math sense, the eigenstress tensor = { }, non-zero constant
in the inclusion and zero in the matrix. It is well-known and commonly used in the
composite mechanics fact, that for the inclusion of ellipsoidal shape the resulting stress
inside the inclusion also were constant (Eshelby solution). In the real world, however,
such a shape is rather exception than a rule: the more common are the fiber-like and
penny-like shapes. In such the inclusions, the stress is non-uniform even for the constant
far stress or eigenstress. The problem of practical importance is the shape e ect on local
and mean (averaged) stress concentration in the inclusions. The latter is indicating ability
of inclusion to transfer the load and, thus, to improve overall elastic sti ness of composite.
Inclusion’s shape is rarely considered in studies of fiber—matrix interactions. The pre-

vious analytical (Goh et al. 1999) and FE analyzes (Goh et al. 2000) have been concerned
with the e ect of fibre shape when the surrounding matrix is plastic. Studies of elastic
load transfer by photoelasticity (Schuster & Scala 1964) and FE analysis (Carrara & Mc-
Garry 1968) demonstrated stress concentrations in the matrix surrounding the cylindrical
fibre end and that these were reduced at a tapered fibre end. However, these conclusions
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were not complete; ever recent publications (Goh et al. 2004) deal with the simplified
(namely, axisymmetric geometry based) models.
The aim of this study is twofold. The first goal to obtain convergent (and, thus,

reliable) solution of the 3D Eshelby-type problem by the finite element method (FEM)
in the case of very high aspect ratio inclusion. The second one is to investigate way
and extent to which local and average stress in and around the inclusion is a ected by its
shape. In doing so, we address the following question: is it possible (and, if yes, then how)
to define an ellipsoid, “equivalent” in the averaged stress sense to a rod or platelet of high
aspect ratio? From the macroscopic description of composite mechanics standpoint, the
averaged stress inside the inclusions are of primary interest. Keeping in mind a lot of work
done already for composites of ellipsoidal inclusions, the idea to suggest some “equivalent
ellipsoid” concept providing application of numerous available theories for the composites
of ellipsoidal inclusions to the "real-world" composite materials seems very attractive.
In what follows, we give a brief theory account of the numerical method first. Then,

we start numerical study with the 2D Eshelby-type problem (plane strain formulation)
and evaluate the local stress variation in the major axis direction as well as the averaged
over the inclusion stress for various aspect ratio and ratio of shear moduli of inclusion
and matrix. An accuracy of numerical algorithm was tested on the problem for a plane
with elliptic inclusion known to possess an exact analytical solution; another was the
convergence check consisting in comparison of the numerical data obtained on a given
and refined meshes. Then, the same problem is studied in 3D in the axisymmetric state-
ment. In turn, these results along with the Eshelby solution for three-axial ellipsoid are
utilized for testing and accuracy estimation sake when a general 3D problem is solved.
Parametric numerical study of the 3D models (both the rods and platelets) and proof of
the “equivalent ellipsoid" hypothesis completes this work.

5.2 FEM theory

5.2.1 Elasticity theory equations

The force balance equation is
· + p = 0 (5.2)

Here, is a stress tensor, p is a body force vector and is the nabla-operator
(Hamilton’s operator):

= e (5.3)

where e is basis vector of coordinate system, "·" is the scalar product operation. The
stress tensor is related to strain tensor and tensor of initial (say, thermal) stress
by the Lame formula

= L + (5.4)

Here tensor L = L ( ) is the elastic sti ness tensor. The strain tensor is related to
the displacement vector u by

= 0 5[ u+ ( u)T] (5.5)

On the surface of the volume the following boundary conditions are considered:
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1) on the part 1 the displacements vector u is specified:

u = f(r ) r 1 (5.6)

2) on the part 2 the surface forces F are specified:

n· (r t) = F(r t) r 2 (5.7)

3) on the part 3 the normal displacement and shear forces are absent:

n · u(r ) = 0 n× [(n· (r t))× n] = 0 r 3 (5.8)

Here, n is the outer normal unit vector to surface .

5.2.2 FEM equations

Let us consider solution of the elasticity theory problem by the Finite Element Method
(FEM). To obtain the equations of resolving linear system, we apply the Bubnov-Galerkin
procedure. First, we multiply equation (5.2) by the shape function (associated with
the node index = 1 2 where is a total node number of FE mesh of ) and
then integrate over the volume . Then, we rewrite equation (5.2) in the "weak" form:

Z
· +

Z
p = 0 (5.9)

By applying the identities

· ( ) = · + · (5.10)

Z
· =

Z
n · (5.11)

we obtain from (5.9)

Z
· =

Z
p +

Z
n · (5.12)

Next, we substitute the formulas (5.4) and (5.5) in (5.12) and make use of the bound-
ary conditions (5.7) to obtain from (5.12) the equation

1

2

Z
[L( u+ ( u)T] · (5.13)

=

Z
p

Z
· +

Z
F(r t)

Following the FEM scheme, we approximate the u, p, and F on each finite element
as

= = 1 2 ( = (u p F )) (5.14)

where is node number of element with number , =1, 2, ..., , is a total
number of finite elements.
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Finally, substituting the expressions (5.14) into (5.13) gives us the equations for nodal
values of the displacement vector u(r )= U ( ) U :

1

2

X
=1

Z
[L( (U ) + ( (Uk ))T)] · (5.15)

=
X
=1

Z
p

Z
· +

Z
F

¸

After calculation of the volume and surface integrals in (5.15) and assembling the equa-
tions (5.15) over all the finite elements, we come to a global system of lineal algebraic
equations with unknown vector {U} of the nodal displacements:

[ ] {U} = {R} (5.16)

Here, vector {R} is a sum over the elements of the RHS of the equations (5.15) and the
matrix [ ] with dimensions × is the symmetric and positively defined matrix.

5.3 2D problem (plane strain)

In this part, we consider a 2D solid with the inclusions of two kinds: a rod with rounded
edge of length 2 and thickness 2 , Fig.5.1 and an ellipse with semi-axes and ,
Fig.5.2. Inside the inclusion, we assume the uniform eigenstress = to be applied.
Two loading cases will be considered, namely 11 = 1 and/or 22 = 1; in the 2D plane
strain problem, we have also 33 = 1( 11 + 22). All other components of the tensor
are equal to zero. The disturbance caused by inhomogeneity, decays as 2, where is a
distance form inclusion. E.g., at the distance = 30 from inclusion the matrix stress
is about three orders of magnitude below the applied stress in the inclusion. Therefore,
instead of use the special, so-called "infinite" elements to solve for an unbounded solid,
we can alternatively consider a finite matrix domain, su ciently large to make e ect of
the free outer boundary on the stress in the vicinity of inclusion negligibly small. A
square with the side length equal to 100 was found to be quite su cient and thus was
accepted for practical computations. Moreover, due to symmetry of the model problems
with eigenstress taken in the form = , it is possible to reduce our numerical analysis
to the first quadrant only
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Fig.5.1. Model 1: plane with the rod-like inclusion

Fig.5.2. Model 2: plane with the elliptic inclusion

In all the subsequent calculations, we accept 1 = 0 = 0 25 Two varying parameters
were a) aspect ratio = 10 20 50 100 200 500 1000; and b) the shear moduli ratio

= 1 0 = 0 1 1 10 100 and 1000 In Fig.5.3- Fig.5.4, a typical finite-element mesh
is shown for a whole domain as well as in the vicinity of inclusion with = 10. To
ensure adequate approximation of the highly inhomogeneous stress field near the matrix-
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inclusion interface, the fine mesh was used in and around the inclusions. The special care
was taken in the case of high ( 100) aspect ratio to ensure su ciently fine mesh in the
area of stress steep variation and, in the same time, to prevent the total number of DOFs
from getting exceedingly large.

Fig.5.3. FE mesh in the first quadrant.

Fig.5.4. FE mesh around the rod-like inclusion and symmetry of solution.
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Below, some results of the of FE model testing are given. So, in Fig.5.5 the obtained
by FEM numerical (circles - for aspect ratio = 20 and triangles - for aspect ratio =
200) and analytical (solid and dot lines, respectively) solutions for =10 corresponding
to hydrostatic eigenstress 11= 22=1 in the elliptic inclusion are shown. As follows form
Fig.5.5 and similar results for =0.1, 1, 10, 100 and 1000 and =10, 20, 50, 100, 200,
500 and 1000, the numerical and analytical solutions agree quite well for a whole range of
parameters. Expectedly, stress is constant in the inclusion and tends to zero outside of it.
Noteworthy, 22 is smaller than 11 and drops to zero with the aspect ratio growing
up.
In Fig.5.6-av the value of average stress h 11i in the strip-like inclusion (solid lines)

and in the elliptic inclusion (dotted lines) are shown. As seen from the plots, both
and influence greatly the average stress h 11i in the inclusion. Interestingly, the moduli
ratio 0 exists ( 0 5), where the average stress in inclusion.is practically invariant of
the aspect ratio . At = 0 , the average stress h 11i is practically constant and
equal to 0 67. However, for di erent from 0 the aspect ratio a ects average
stress in the inclusion. Namely, for 0 value of the h 11i decreases with the
aspect ratio increased, and for 0 h 11i increases with increasing the aspect
ratio .

Fig.5.5. 11 variation along a -coordinate, = 10
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Fig.5.6-av. Average stress < 11>in inclusion (at initial stress 11=1,

22=1; solid lines - for strip-like inclusion, dot lines - for ellipse).

Now, we consider the Eshelby-type problem for a strip-like inclusion (Fig.5.1) with
the eigenstress 11 = 1 prescribed. The results of numerical solution are presented in
Fig.5.6 -Fig.5.6 with signs circle ( = 10), square ( = 50), triangle ( = 200),
and circumference ( = 1000). Also, in Figures 5.6 ( - ) the analytical solution is
shown for elliptic inclusion of the same aspect ratio (solid lines for = 10, dashed lines
for = 50, dotted lines for = 200, and dash-dotted lines for = 1000).
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Fig.5.6a. 11 variation along a -coordinate, = 0 1

Fig.5.6b. = 1
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Fig.5.6c. = 10

Fig.5.6d. = 1000

In Table 5.1, the results of calculations of average stress h 11i in the inclusion are
presented. In this and the next tables, the columns labeled "num." contain the results
obtained with numerical (FEM) method for solid with strip-like inclusion and the columns
labeled "exact" show the analytical solution for a solid with elliptic inclusion. Noteworthy,
the qualitative behavior and absolute values of mean stress for the compared inclusions
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Table 5.1: Average values of 11 obtained with numerical (FEM) method (num.)
and with exact solution (exact)

A
G 10 50 200 1000

num. exact num. exact num. exact num. exact
0.1 0.980 0.989 0.996 0.998 0.999 1.0 1.0 1.0
1 0.821 0.854 0.948 0.969 0.983 0.992 0.998 0.998
10 0.331 0.359 0.681 0.738 0.878 0.919 0.979 0.983
100 0.048 0.053 0.188 0.219 0.464 0.529 0.835 0.849
1000 0.005 0.005 0.023 0.027 0.083 0.101 0.335 0.360

are rather similar. Such a comparison is somewhat conditional because it is not obvious
how to compare the inclusions of di erent shapes. One way is to compare the inclusions of
equal aspect ratio (Table 5.1 and Fig.5.7a). Probably, more physically motivated choice
is to compare inclusions of equal dimensions (major axis and area): then, their aspect
ratios relate approximately by = 4 At first sight, in this case agreement of
the compared data looks much better, see Fig.5.7b; however, it a subject of the careful
asymptotic analysis.

Fig.5.7a. Comparison: equal aspect ratio.
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Fig.5.7b. Comparison: equal area and length.

In Fig.5.8 Fig.5 8 the results of numerical and analytical solutions presented for
the eigenstress 22 = 1. In this case, as before, at increasing of the value of aspect ratio
from 10 to 1000 value of stress 22 rapidly descends and tends to zero.

Fig.5.8a. 11 variation along a -coordinate, = 0 1
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Fig.5.8b. = 1

Fig.5.8c. = 10
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Table 5.2: Average values of obtained with numerical (FEM) method (num.)
and with exact solution (exact)

A
G 10 50 200 1000

num. exact num. exact num. exact num. exact
0.1 -0.186 -0.207 -0.283 -0.300 -0.317 -0.324 -0.331 -0.332
1 -0.233 -0.248 -0.303 -0.314 -0.324 -0.328 -0.332 -0.332
10 -0.100 -0.108 -0.222 -0.242 -0.291 -0.305 -0.326 -0.327
100 -0.015 -0.016 -0.062 -0.072 -0.154 -0.176 -0.278 -0.283
1000 -0.0015 -0.0017 -0.0075 -0.0089 -0.028 -0.033 -0.111 -0.120

Fig.5.8d. = 1000

In Table 5.2, the results of calculations of average stress concentration h 11i 22 are
given . Comparison of these data as well as those shown In Figs 9a, b leads to conclusion
analogous to that we made above: evaluation of averaged stress in the strip-like inclusion
can be performed using the Eshelby solution for ellipse with some "equivalent" aspect
ratio: however, local stress fields in the compared inclusions are quite di erent (uniform
in the ellipse and varying steeply near the interface in the strip-like inclusion).
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Fig.5.9a. Comparison - equal aspect ratio.

Fig.5.9b. Comparison - equal area and length.

5.4 3D problem: spherocylinder (long capped rod)

In this part, we analyse stress in a solid with inclusions of two kinds. They are long fiber
with rounded ends and its counterpart, prolate ellipsoid of revolution (spheroid). The
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Figure 5.10: Stress 33 in the 1st octant due to far field h 33i = 1

both shapes are axially symmetric: however, the uniform eigenstress = prescribed
there makes the problem essentially three-dimensional.
The finite element analysis of 3D problem is, in general, much more time-expensive as

compared with the two-dimensional problems. Fortunately, in the 3D case disturbance,
caused by inhomogeneity, decays as 3, where is a distance form inclusion. Thus,
unlike 2D case, the matrix stress is about three orders of magnitude below the eigenstress
in the inclusion already at the distance = 10 . A finite matrix domain, su ciently
large to make e ect of the free outer boundary on the stress in the vicinity of inclusion
negligibly small, was found to be 30 and this value was accepted for practical calcula-
tions. Moreover, due to linearity of the problem and symmetry of the domain geometry,
an analysis of the specific problems of type = can be confined to the first octant
only and thus.reducing greatly the computational e ort.

The typical stress distribution in and around the inclusion are shown by the isolines in
the Figures from 5.10 to 5.14: the Fig.5.10-5.12 correspond to the axial far stress h 33i = 1
whereas in the Fig.5.13 and Fig.5.14 the stress components induced by the transversal
to the rod axis direction far stress h 11i = 1 are given. To make the pictures more
informative, a moderate aspect ratio = 10 was taken. However, even in this case, the
tendency common for long rods is clearly seen. Namely, the stress in the middle part
of inclusion is nearly uniform, whereas near the tips we observe considerable and highly
localized stress concentration.
In the case where the eigenstress instead of far field were prescribed, the situation is

quite analogous. Fo, in the Figs form 15 to 20 the stress induced by the load taken in
the form = are presented. In the Figs form 16 to 20, the stress isolines in
cross-section is shown, being the fiber direction.
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Figure 5.11: Stress 11 in the 1st octant due to far field h 33i = 1

Figure 5.12: Stress 13 in the 1st octant due to far field h 33i = 1
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Figure 5.13: Stress 33 in the 1st octant due to far field h 11i = 1

Figure 5.14: Stress 11 in the 1st octant due to far field h 11i = 1
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Figure 5.15: Stress 33 and 13 at the surface of the fiber, 33 = 1

Figure 5.16: Stress 13 inside the fiber, 33 = 1
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Figure 5.17: Stress 11 inside the fiber, 11 = 1

Figure 5.18: Stress 13 inside the fiber, 13 = 1
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Two particular but important loading cases we consider below are 22 = 11 = 1 and

33 = 1 where the problem possesses an axial symmetry and can be e ectively solved using
the FEM software and mesh developed for 2D case. On the one hand, it simplifies and
accelerates numerical study of the problem; on the other hand, it provides the necessary
benchmark for testing workability and accuracy of the 3D FEM solver and the obtained
numerical data.
The last problem we consider here is 22 = 11 = 1. The calculations using FEM for

four values of material ratio = 0 1 1 10 and 1000 and five values of the aspect ratio
= 10 50 200 500 and 1000 have been performed. Also, we obtain the analytical and

numerical solutions of the analogous axisymmetric problem for a solid with inclusion in
form of spheroid with -axis of rotational symmetry. In Fig.5.19( ), the stress 33

variation along the axial symmetry axis ( -axis) for various values are presented.

Fig.5.19a. 33 variation along a -coordinate, = 0 1
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Fig.5.19b. = 1

Fig.5.19c. = 10
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Fig.5.19d. = 1000

Fig. 5.20. Comparison of < 33> - equal aspect ratio.

As our comparative analysis shows, both the 2D and 3D codes give the close results
for the axisymmetric problem which, in turn, agree well with analytical solution in the
spheroidal inclusion case. It confirms the software workability and reliability of the nu-
merical data obtained with it. Also, it is seen from the Fig.5.20 that, likewise the above

23



Table 5.3: Average values of 33 obtained with numerical (FEM) method (num.) for
a solid with a fiber with round end, and (exact) for a solid with long ellipsoid

A
G 10 50 200 500 1000

num. exact num. exact num. exact num. exact num. exact
0.1 0.992 0.996 0.998 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1 0.934 0.959 0.987 0.997 0.997 1.0 0.999 1.0 1.0 1.0
10 0.659 0.693 0.925 0.966 0.981 0.995 0.995 0.998 0.998 0.999
100 0.179 0.183 0.675 0.738 0.914 0.953 0.976 0.984 0.988 0.992
1000 0.022 0.022 0.203 0.220 0.672 0.668 0.898 0.859 0.950 0.928

considered 2D problem, the qualitative behavior and absolute values of mean stress for
the compared inclusions are quite similar.

5.5 Brief conclusions:

- the reliable numerical FE solution has been obtained for a solid with a high-aspect ratio
inclusion in 2D and 3D;
- the parametric study of the problem has been performed and local as well as averaged

stress inside and outside the inclusion were evaluated;
- an “equivalent” ellipsoid concept has been suggested and confirmed for both the

long rods and platelets by comparison with the analytical Eshelby’s solution for a single
ellipsoidal inclusion in an unbounded solid.
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2.4 A finite cluster of spheroidal inclusions in an elas-

tic solid subjected to inhomogeneous external field:

the method of analysis

2.4.1 The problem statement

Let us consider an infinite elastic solid with shear modulus 0 and Poisson ratio 0,
containing a finite number of spheroidal inclusions made from material with shear
modulus and Poisson ratio = 1 2 Size and shape of th spheroid is given
by its semi-axes 3 (along the axis of revolution) and 1 (in perpendicular direction).
To describe geometry of the problem, we introduce arbitrarily the global Cartesian

coordinate system 1 2 3 and the inclusion-related local Cartesian coordinate systems

1 2 3 = 1 2 ; the last being introduced so that its origin lies in the
center of mass of th spheroid whereas the axis 3 coincides with the its revolution axis.
Position of th local system (or, the same, th inclusion) with respect to global coordinate
frame is defined by the translation vector X = ( 1 2 3 ) being the global Cartesian

coordinates the center of th spheroid and the rotation matrix =
© ª

; ( ) =

( ) 1 and det ( ) = 1. So, the local coordinates of arbitrary point x are related to
global ones by

=
¡ ¢

; (2.358)

Cartesian projections of the vector u transform according to

= (2.359)

Also, we introduce local curvilinear (spheroidal) coordinates for each inclusion in such
a way that the matrix-inclusion interface

µ
1

1

¶2
+

µ
2

1

¶2
+

µ
3

3

¶2
= 1 (2.360)

would coincide with the coordinate surface = 0 Namely, ( ) are the spheroidal
coordinates related to the Cartesian ones by (Hobson 1931)

1 + 2 = exp ( ) 3 = ; (2.361)
2
= 2 1 2 = 1 2;

1 | | 1 0 2

The relations (2.361) at ( ) 0 describe the family of confocal prolate spheroids with
inter-foci distance 2 . In the case of an oblate spheroid, one must replace on and
on ( ) in this and all other relevant formulae.
So defined composite domain is subjected to an inhomogeneous external, or far, stress

field. We do not assume any analytical expression for it nor specify its nature: it can be,
say, numerical solution for a stress concentrator (crack, hole, etc.). In what follows, we
postulate only that the displacement vector U( ) corresponding to above mentioned far
stress tensor is known in any point of the interfaces = 1 2 On these surfaces,
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the conditions of perfect mechanical contact, which are continuity of the displacement
vector and normal traction vector through the interface:

(u u) = 0; [Tn (u ) Tn (u)] = 0; (2.362)

= 1 2

Here, u and u are the displacement vectors in matrix domain and th inclusion, respec-
tively; they, as well as the far field U, satisfy the equilibrium equation

· = (1 2 ) u+ ( · u) = 0 (2.363)

The traction vector
Tn = n = (L ) n (2.364)

where is the stress tensor, n is the outside normal to interface, L is the fourth-rank
elastic sti ness tensor and

=
1

2

h
u+( u)

i
(2.365)

is the strain tensor. Finally, in (2.364) represents so-called strain-free, or transformation
(e.g., residual or thermal) stress.

2.4.2 Theoretical background.

Partial vectorial solutions of the Lame equation in spheroidal coordinates

The following sets of the partial vectorial solutions of Lame equation have been introduced
by Kushch (1997): constrained at kxk , or singular F

( )
= F

( )
(x ):

F
(1)
= e1

1
+1 e2

+1
+1 + e3 +1; (2.366)

F
(2)
=
1 £
e1( + ) 1 + e2( ) +1 + e3

¤
;

F
(3)
= e1

n
( 1 2)D2

1
1

h¡
(0)
¢2

1
i
D1 + ( + 1)( + ) ( +1)

1
1

o

+ e2
n
( 1 + 2)D1

+1
1

h¡
(0)
¢2

1
i
D2 ( 1)( ) ( +1)

+1
1

o

+ e3
h

3D3 1

¡
(0)
¢2

D3 + ( +1) 1

i
;

constrained at kxk 0, or regular f
( )
= f

( )
(x ):

f
(1)
= e1

1
1 e2

+1
1 + e3 1; (2.367)

f
(2)
=

1

+ 1

£
e1( + 1) 1 + e2( + + 1) +1 e3

¤
;

f
(3)
= e1

n
( 1 2)D2

1
+1

h¡
(0)
¢2

1
i
D1 + ( + 1)( + 2) 1

+1

o

+ e2
n
( 1 + 2)D1

+1
+1

h¡
(0)
¢2

1
i
D2 ( + + 1)( + + 2) +1

+1

o

+ e3
h

3D3 +1

¡
(0)
¢2

D3 +1

i
;
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where

=
+ 5 4

( + 1)(2 + 3)
= ( + + 1)( + 1) ; = 0 1 ; | |

In (2.366) and (2.367) the following notations are used:

e1 = (i+ j) 2 e2 = e1 = (i j ) 2 e3 = k; (2.368)

D1 = ( 1 2) D2 = D1 = ( 1 + 2) D3 = 3

The functions = (x ) and = (x ) are the singular and regular, respec-
tively, solid scalar spheroidal harmonics of the form

(x ) = ( ) ( ) exp( ) (x ) = ( ) ( ) exp( ) (2.369)

In (2.369), and are the associated Legendre polynomials of the first and second
kind, respectively.

Re-expansion formulae for the singular solutions of Lame equation

Translation of a reference coordinate system. Let and are two
equally oriented coordinate systems, x = X + x Then,

F
( )
(x ) =

3X
=1

X
=0

X
=

( )( )
(X ) f

( )
(x ) (2.370)

= 1 2 3; = 0 1 ; | | ;

where

(1)(2)
=

(1)(3)
=

(2)(3)
= 0;

( )( )
= +2 2+ ; (2.371)

(2)(1)
=

µ
+

¶
1

(3)(2)
= 2

µ
+

¶
1 ;

(3)(1)
=

½
2 +

( 1)

¸
+ 2 ( +1)

¾
1 1

+ (2 1)
X
=0

( 1) 1 +2

¡
(0)
¢2

+2 +
¡
(0)
¢2

1 +2 +1

¸

1;
(3)(1)
1 0 = 1 1 0

(3)(1)
1 1 = ( + 1) [1 + ( + ) 1]

1
1 0

(3)(1)
1 1 = ( 1) [1 + ( ) 1]

+1
1 0

In (2.371) are the expansion coe cients in the addition theorem for the solid
spheroidal harmonics (Kushch, 1998)

(x +X ) =
X
=0

X
=

(X ) (x )
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Noteworthy, at least two di erent expressions of exist. The most general form is

(X ) =(1) =
X
=0

( ) + +2 (X + ) (2.372)

where

= ( + +2 +1 2)
X
=0

( 1)

!

µ
+

¶2 2

( + +2 +1 2) ( )

( ) =
X
=0

( )2

! ( )! ( + + 3 2) ( + + 3 2)

and

= ( 1) ( + 1 2)

µ
2

¶ +1µ
2

¶

In particular, for = the expression of reduces to

=
( + + + 2)

! ( + + 3 2) ( + + 3 2)

where ( ) is the Gamma-function and ( ) = ( + ) ( ) is the Pochhammer’s
symbol.
The formulas (2.370) — (2.372) are valid for any two aligned coordinate systems. In the

case of well-separated particles, namely for kX k + the more simple expression
of exists:

(X ) = (2) = ( 1)
X
=0

( ) + +2 (X ) (2.373)

where the functions (r) = ( )! 1 ( ) are the singular solid spherical har-
monics and

=

µ
2

¶2
( )

In (2.371), we must also define 1 1 for | | = + . So, for kX k + the

coe cient + +2 takes the form

(2) + +2 =
( 1) +

( + 1 2) ( + 1 2)
( + ) + +1

+ +1 (X ) ;

in a general case,

(1) + +2 =
( + 3 2) ( + 3 2)

X
=0

( 1)

!
( + + + 3 2)

+ + 2 + 5 2

+ 1

· + +2
+ +2 +2 (X + ) 2( + + 2 + 3 2)

+

+
+ +1
+ +2 +1 (X + )

¸

As to an infinite sum in the expression of
(3)(1)

(2.371), no problems arise with its cal-
culation: by change the summation order it reduces to the form, analogous to (2.372),
(2.373).

107



Rotation of a reference coordinate system. Now, we consider two coordinate
systems and with common origin = : x = O · x .
The transformation formulae for the partial regular solutions (2.367) due to rotation

of coordinate frame are the exact and finite (Kushch, 1998):

f
( )
(x ) =

3X
=1

+X
=0

X
=

( )( )
(w ) f

( )
(x ) (2.374)

where

( )( )
=
X
=

+X
= +

(1) ( )( )
+ ( ) (2) ( )( )

+ ( )
( )!

( )!

( + )!

( + )!
(2.375)

× 2 (w ) + 3 1(2 1)
X
=

h¡
(0)
¢ (3)(3) ¡

(0)
¢ (2)(2)

i

In (2.374), we keep in mind that the vectorial functions standing in the opposite sides
of equality are written in their local coordinates and components. The functions
entering (2.375) are the spherical harmonics in a four-dimensional space (Bateman &
Erdelyi, 1953) and w = { 1 3 3 4} kwk = 1 is the vector determining uniquely the
rotation matrix

O =

2
2

2
1

2
3 +

2
4 2 ( 2 3 1 4) 2 ( 1 2 + 3 4)

2 ( 2 3 + 1 4)
2
3

2
1

2
2 +

2
4 2 ( 1 3 2 4)

2 ( 1 2 3 4) 2 ( 1 3 + 2 4)
2
1

2
2

2
3 +

2
4

(2.376)

Also,

(1) ( )( )
= 0 for ; (1) ( )( )

=
(1)
+ 2 + 2 (2.377)

(1)
(2)(1)

=

µ
+ 1 + 1

¶
(1) (1) (3)(2)

= 2

µ
+ 1 + 1

¶
(1)
+1 +1

(1) (3)(1)
= ( +3) ( +3) +

2

+ 1

µ
+ 2 + 2

¶¸
(1)
+1 +1

and
(1)
( ) =

( 1)( ) 2 µ2¶ µ
+

2
+
1

2

¶ µ
2

¶
!

for even and
(1)
( ) = 0 otherwise. The expressions of (2)

( )( )
are defined by

(2.377), with
(1)
replaced by

(2)
( ) =

µ
2

¶ µ
+
1

2

¶ µ
+

2
+
3

2

¶ µ
2

¶
!;

(2)
( ) = 0 for odd.

The formulae (2.374) are written for the most general case 6= and
(0)
6=

(0)
.

In the context of this paper, we use them for = only: in this case, the expression of
expansion coe cients (2.375) is simplified substantially.
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2.4.3 Formal solution

To solve the boundary-value problem (2.362), (2.363) for displacements, we shall follow
the approach developed by Kushch (1997, 1998a) for the uniform external loading. First,
due to linearity of the problem, we apply the superposition principle to decompose the
displacement field in the matrix domain into a sum of far field U and disturbances, or
near fields, induced by each inhomogeneity:

u(x) = U (x) +
X
=1

U (x ) (2.378)

The disturbance U caused by each separate inclusion vanishes at infinity and, therefore,

can be expanded into a series over the singular partial solutions F
( )
of Lame equation

(2.363) (formula (2.366)):

U (x ) =
3X
=1

X
=0

X
=

( )( )
F
( )
(x ) (2.379)

where
( )( )

are the unknown series coe cients.
On the other hand, since displacement field inside the inclusions is continuous and

constrained, its series expansion contains the regular partial solutions f
( )
(2.367) only,

written in the local coordinates of a given inclusion with index :

u =
3X
=1

X
=0

X
=

( )( )
f
( )
(x ) (2.380)

where
( )( )

as well as the
( )( )

in (2.379), are the constants to be determined. And,
since the set of functions (2.366), (2.367) is full and linearly independent, the displacement
vector (2.378) in the vicinity of this inclusion allows expansion of the form

u =
3X
=1

X
=0

X
=

h
( )( )

F
( )
(x ) +

( )( )
f
( )
(x )

i
(2.381)

To obtain the coe cients
( )( )

, we have to rewrite all the terms in (2.378) but one with
= in variables of th local coordinate system.
Provided we have the expansion (2.381) obtained in that or another way, the rest of

solving procedure resembles that described by Kushch (1997,1998a). To get a resolving

set of linear algebraic equations for determining the series coe cients
( )( )

and
( )( )

,
we substitute the expressions (2.380) and (2.381) into the first of the interfacial boundary

conditions (2.362). Note, that the functions F
( )
and f

( )
are introduced so that to sim-

plify to a maximum possible extent satisfying the boundary conditions at the coordinate
surfaces = 0. On the spheroidal surface (index is omitted for the time being), the
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following representation of F
( )
take a place:

F
(1)
¯̄
= (0) = e1

1
+1

1
+1 e2

+1
+1

+1
+1 + e3 +1 +1; (2.382)

F
(2)
¯̄
= (0) = e1

( + ) 1 1 + e2
( ) +1 +1 + e3 ;

F
(3)
¯̄
= (0) = e1

©
( + 1) (0) 1 + ( + 1)

£
1 + ( + ) ( +1)

¤
1
1

ª
1
1

+ e2
©
( 1) (0) +1 ( 1)

£
1 + ( ) ( +1)

¤
+1
1

ª
+1
1

+ e3
©
( ) (0)

( +1) 1

ª
1;

where = ( (0)) and ( ) = ( )!
( + )!

( ) exp( ). are the scalar surface harmon-
ics.
The analogous expressions of the functions f

( )
(2.367) take a form

f
(1)
¯̄
= (0) = e1

1
1

1
1 e2

+1
1

+1
1 + e3 1 1; (2.383)

f
(2)
¯̄
= (0) = e1

( + 1)

+ 1
1 1 + e2

( + + 1)

+ 1
+1 +1 + e3

+ 1
;

f
(3)
¯̄
= (0) = e1

©
( + ) (0) 1 + ( + 2) [ 1 + ( + 1) ] 1

+1

ª
1

+1

+ e2
©
( + + 2) (0) +1 + ( + + 2) [ 1 + ( + + 1) ] +1

+1

ª
+1
+1

+ e3
©
( + + 1) (0)

+1

ª
+1

The formulas (2.382) and (2.383) can be written in a compact form as

F
( )
(x ) =

3X
=1

( )( )
e +2 ( ); f

( )
(x ) =

3X
=1

( )( )
e 2+ ( ) (2.384)

where 1 = 1, 2 = +1 and 3 = Using the orthogonality property of the complex-
valued vectors e (2.368) and surface harmonics it is rather straightforward, by means
of standard algebra, to reduce the vectorial functional equality (2.362) to an infinite linear
algebraic system. A suitable for the computer algebra form of this system is

( 0)A
( )
+ ( 0)a

( )
= ( )D

( )
(2.385)

= 1 2 ; = 1 2 ;

where the vector A
( )
contains the unknowns

( )( )
+ 2 , the vectors a

( )
and D

( )
include

the values
( )( )

+2 and
( )( )

+2 , respectively.
Obtaining the second set of equations from the traction vector continuity condition

follows the quite analogous way. By taking into account that n = e is the unit vector
normal to spheroidal surface, the traction vector Tn can be represented as

Tn = e + e + e (2.386)

= 2

µ
1 2

e · u+ u+
1

2
e × × u

¶
n

Substituting the series (2.380) and (2.381) into the second of the contact conditions (2.362)
written in the form (2.386) gives us another set of equations (for more details, see Kuchsh
(1997)):

( 0)A
( )
+ ( 0)a

( )
= ( )D

( )
+ 1

¡
T0 T

¢
(2.387)

110



where T is the right-hand side vector obtained by expansion of the strain-free term · n

T = ( 33 ( 13 23) 2 ( 11 + 22) 13 23 ( 11 22 2 12) 0) (2.388)

1 is the Kronecker delta and = 3 1 = 0 0 is an aspect ratio of spheroid.

Now, we combine (2.385) and (2.387) to exclude
( )( )

from consideration; after some
algebra, one obtains

1A
( )
+ 2a

( )
= 1

¡
T0 T

¢
; (2.389)

1 = ( ) ( ( )) 1 ( 0) ( 0);

2 = ( ) ( ( )) 1 ( 0) ( 0);

= 1 2 ; = 1 2

To get a closed set of linear algebraic equations, we need to make the last remaining step,
namely, to express the coe cients

( )( )
in terms of

( )( )
and U.

2.4.4 Local expansion

In (Kushch, 1997), the far field displacement vector was taken in the form U = bE ·
x bE being the second-rank symmetric constant tensor. For this particular problem, it is
possible to find analytical expression of

( )( )
. Our situation is di erent, however: we do

not suggest any specific analytical form of U. Therefore, some numerical technique has
to be applied in order to determine

( )( )
accurately.

Let us proceed with the local expansion of U in the vicinity of th inclusion (more
exactly, of the point ), assumed in the form

U = U e =
3X
=1

X
=0

X
=

( )(0)( )
f
( )
(x ) (2.390)

First, we express the left side of (2.390) in projections on the local complex-valued basis
vectors:

U = U e = U e ; (2.391)

to find U , we make use the relationship between e and e :

e = e where = D 1 D and =
1 1 0

0
0 0 1

(2.392)

Then, with account for the (2.384), we transform the projections of (2.389) to

U =
3X
=1

X
=0

X
=

( )(0)( ) ( )( )
+ 2( ) (2.393)

=
X
=0

X
=

Ã
3X
=1

( )(0)( )
+2 e

( )( )
+2 e

!
( )

where e1 = + 1, e2 = 1 and e3 =
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Integrating (2.393) over 1 1 and 0 2 with weight ( ) and
taking the orthogonality property of the spherical harmonics into account, we obtain a
set of equations

3X
=1

( )(0)( )
+2 e

( )( )
+2 e =

( )( )
; (2.394)

= 1 2 3; = 1 2 ; | | 6 ;

In (2.394),

( )( )
=

1
2Z
0

1Z
1

U ( ) (2.395)

where

=

2Z
0

1Z
1

=
4

2 + 1

( )!

( + )!
(2.396)

For each , we have a separate set of 3(2 + 1) independent linear equations, determining

the unknowns
( )(0)( )
+2 uniquely and, thus, the expansion (2.390) is established.

Finding the expansions of U in (2.378) for 6= follows the same way: we have
no need to expand U written already in variables of th local coordinate system. As to
other terms, we note that, with representation of U (2.379) taken into account, it su ces
to obtain the expansions of kind (2.390) for the separate terms in (2.379), i.e., for the

singular partial solutions F
( )
. Application of the exposed above procedure gives us a set

of equalities

F
( )
(x ) =

3X
=1

X
=0

X
=

( )( )
(X ) f

( )
(x ) (2.397)

where X = X X and = ( ) 1 define relative position and orientation
of th and th local coordinate systems. Now, we recognize that the relations (2.397)
are nothing more nor less than the re-expansion formulae, or addition theorems, derived
elsewhere (Kushch, 1997, 1998a). There, the explicit analytical expressions of

( )( )
had

been obtained in terms of infinite series of special functions: they are summarized in
”Theoretical background” subsection. Thus, we have two independent ways to evaluate
( )( )

one analytical (although rather involved) and another mostly numerical. Their
comparison will be given below; here we note only that the exact analytical results may
serve as a benchmark to estimate accuracy of the numerical technique developed here.
However, without regard to the specific evaluation method chosen, after we have the
formulae (2.397) established we substitute them into (2.379) to obtain the expansion of
U in the form (2.390), with the coe cients

( )( )( )
=

3X
=1

X
=0

X
=

( )( ) ( )( )
(X ) (2.398)

= 1 2 ( 6= )
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Collecting all these terms together, we get

( )( )
=
X
=0
6=

( )( )( )
(2.399)

or, in the matrix form adopted,

a
( )
=
X
6=

X
=1

( )( )
A
( )

(2.400)

The (2.398) and (2.399) are exactly the formulae we need to transform (2.389) into a

closed set of linear algebraic equations with the unknowns
( )( )

.

2.4.5 Numerical solution

Numerical realization of the method exposed is rather simple and consists mostly in
generating and solving the truncated set of equations (2.389), where the equations and
unknowns with 6 max are only retained. It has been shown elsewhere (Kushch, 1998b)
that obtained in such a way approximate solutions converge to exact one with max

provided the domains, occupied by inclusions, do not intersect, There, an e cient
iterative solving procedure has been also suggested which does not require the full matrix
of linear system formation and reduces greatly the total computational e ort. Even
simplest iterative scheme, following directly from (2.389)

A
( )

+1 = ( 1)
1
h

2 · a
( )

+ 1

¡
T T0

¢i
; (2.401)

where a
( )

is calculated according to (2.398) and (2.399) for A
( )

is of order ( )2 (
is a number of equations retained in the truncated linear system) and obviously preferable
in comparison with direct ( )3 Gauss-like linear solver. Applying the method of
conjugate gradients in the form of so-called GMRES routine (Fraysse, Giraud and Gratton
(1998)) allows to reduce computational time even more substantially.
The algorithm exposed above involves numerical integration over the spheroidal sur-

faces and, in order to ensure convergence of computational scheme, the surface integrals
must be evaluated with su cient accuracy. The scheme applied by Kushch et al. (2002)
seems to be most appropriate for this aim. It assumes uniform distribution of integration
points in azimutal direction ( -integral) and Gauss-Legendre formula for integration over
:

2Z
0

1Z
1

( ) =
1

2

X
=1

X
=1

( ) ; (2.402)

where = 2 ; for the tabulated values of Gauss’ integration points and weights ,
see e.g. Abramovitz and Stegun (1964). With integration points taken in each direction,
(2.402) is exact for the spherical harmonics up to order (2 1). As a consequence, this
scheme allows to calculate the expansion coe cients with high accuracy: e.g., the relative
error of the numerically obtained values

( )( )
is of order 10 6 ÷ 10 7, comparable with

accuracy of series summation in the analytical formulae. Notheworthy, computational
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e ort of numerical integration only slightly (˜1.2 times) exceeds that of the analytical
method. The main advantage of numerical integration is, however, in that it does not
require the involved math to be used and makes the numerical realization of the method
exposed much simpler and, at the same time, more general and robust.

2.4.6 Elastic half space containing a finite array of spheroidal

inclusions

Integral transforms of the singular solutions of Lame equation

For the problems for a composite half-space or layer there is a need in representation of
solution, convenient for executing the boundary conditions on the plane surfaces. Such a
representation can be obtained by using the appropriate Fourier integral transforms. The
transforms for the singular solutions of the Lame equation a in spherical basis were devel-
oped by Golovchan et al.(1993); we will derive them in the case of spheroidal coordinate
system.
Let us consider, for beginning, representation by the double Fourier integral of the

scalar harmonic functions (2.369). For this purpose, it is su cient to use the analogous
formulae for the singular solutions of Laplace equation in spherical basis:

(x) =
( )!

+1
(cos ) exp( ) = ( 1) +

Z Z
± (x) (2.403)

= 1 2 | | ;

where the upper and lower signs in this and all subsequent formulae correspond to the
cases 0 and 0, respectively and

= 1( ) 2 = 2 + 2

± (x) = exp (± ) ( ) ( ) = exp [ ( + )] ;

Now, we take the series expansion (Kushch, 1998b)

(x ) = ( 1)
X
=0

( 2)2 + +

! ( + + 3 2)
(x) kxk Re( );

into account. After substitution of it into (2.403), we get

(x ) = ( 1)
X
=0

( 2)2 + +

! ( + + 3 2)
( 1) +

Z Z
+2 ± (x) (2.404)

Because of +2 = 2 , we change order of integration and summation to obtain

(x ) = ( 1) +
µ
2

¶ +

( 1)

Z Z
± (x)

X
=0

( 2)2

! ( + + 3 2)
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Note that the series (Abramovitz and Stegun, 1964)

X
=0

( 2)2 +

! ( + + 1)
= ( )

coincides with the internal sum at = +1 2 and we cm to the following Fourier integral
transform:

(x ) = ( 1) +
Z Z

± (x) Re( ) (2.405)

where

=
( 1)

2

µ ¶ r
2

+1 2( )

The inverse integral transforms have the form

( 1) + exp (± ) =
1

2

Z Z
(x ) ( ) Re ( )

= 1 2 ; | |

Representation of a general solution of Lame equation, bounded in half-spaces 0 is

u(x) =

Z Z 3X
=1

( )H
( )±
(x) 0; (2.406)

where are the integral densities. The vectorial functions

H
(1)±

=
±

(± )
H
(2)±

=
×
¡
e3

±
¢

(± )
(2.407)

H
(3)±

=
1

(± )

£ ¡
±
¢
+ 4 (1 ) e3

±
¤

can be thought as the regular solutions of Lame equation for a half-space. We note their
properties

·H
(1)±

= ·H
(2)±

= ×H
(1)±

= 0 ; ·H
(3)±

= (± ) 2(2 1)E± ; (2.408)

×H
(3)±

= ± H
(1)±
; ×H

(3)±
= (± ) 4( 1)H

(2)±

The functions (2.407) were introduced in (Golovchan et al 1993). It was shown there
that to satisfy the boundary conditions on the planes = is convenient to expand
these functions over the full and orthogonal set of vectorial harmonics (Ulitko 1979)

L ( ) = e M ( ) =
1

× =

µ
e + e

¶

N ( ) =
1

× (e ) =

µ
e e

¶
(2.409)
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These expansions have the form

H
(1)±

= (L ±M ) exp(± ) H
(2)±

= ±N exp(± )

H
(3)±

=
1

(± )
[(4 3± )L + M ] exp(± )

By analogy with (2.406), we will find the integral transforms as

F
( )
(x ) = ( 1) + + 1

Z Z 3X
=1

( )( )±
( ) H

( )±
(x) (2.410)

Re ( ) = 1 2 ; | |

In doing so, as well as for derivation of addition theorems, the properties (2.408) of
partial solutions introduced and above integral transforms of scalar harmonic functions
(2.405), (2.406) are used essentially. So, calculating divergence and curl from both the

parts of eqn (2.410) we obtain
( )( )±

= 0 for . Projection of (2.410) on the unit
basic vector e3 gives also

F
(1)
· e = +1 = ( 1) +

Z Z
(1)(1)± ±

By comparison with (2.405) we find
(1)(1)±

= ± +1

For the second equality in (2.410) calculation of curl form left-hand part gives ×

F
(2)
= eF(1) projecting of the expression found on e3 leads to

+1 = = ( )( 1) +
Z Z

(± ) ±

Calculating the curl of right-hand part and taking (2.408) into account we obtain

( 1) + +1

Z Z
(± )

(2)(2)±
H
(1)±

or, in projection on e3,

( 1) + +1

Z Z
(± )

(2)(2)± ±

From here, obviously,
(2)(2)±

= ± Finally, we project on e3 the initial equality to
obtain

= ( 1) +
Z Z

± = ( 1) + +1

Z Z
(2)(1)± ±
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i.e.,
(2)(1)±

=

For the third equality in (2.410) calculation of divergence gives

· F
(3)
=
2(2 1)

= 2(2 1)( 1) + 1

Z Z
(± ) 1 ± =

2(2 1)( 1) +
Z Z

(± )
(3)(3)± ±

from where
(3)(3) ±

= 1 By calculation of curl we find

× F
(3)
=
4
( 1)eF(2) = ( 1) +

Z Z
(± )

h
4( 1)

(3)(3)±
H
(2) ±

+

(3)(2)±
H
(1)±
i

and, using the value
(3)(3)±

calculated before,

4 ( 1) 1 = 4 ( 1) ( 1) + 1

Z Z
(± ) 1 ± =

( 1) +
Z Z

(± )
(3)(2)± ± ;

(3)(2)±
= 4 ( 1) 1

Projecting of (2.410) for = 3 on the complex Cartesian unit vectors completes calculation

of
( )( )±

. Equalizing the coe cients near the harmonic parts (the coe cients near the
biharmonics are identical), we obtain

(3)(1)±
= ±

£
4 3 + ( +1)

¤
1 2

0

and, thus the double vectorial Fourier integral transforms are established.
In turn, to satisfy the boundary conditions on spheroidal surfaces the solution (2.406)

must be transformed to the corresponding local spheroidal basis. Such a transformation
uses the relations

H
( )±
(x) =

3X
=1

X
=0

X
=

(±1) +
( )( )±

f
( )
(x ) = 1 2 3 ; (2.411)

The way to find the coe cients
( )( )±

is quite analogous to that exposed above. So, using
the expansion of scalar harmonics for a half-space into a series over the partial solutions
of Laplace equation in spherical coordinates (Golovchan 1987)

± (x) =
X
=0

X
=

(±1) + + ( ) (x)
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and expansion

(x) =

µ
2

¶ X
=| |

0

µ
+
1

2

¶
(x )¡

2

¢
!
¡
2
+ 3

2

¢
we have

± =
X
=0

X
=

(±1) + + ( )

µ
2

¶

×
X
=| |

0

µ
+
1

2

¶
(x )¡

2

¢
!
¡
2
+ 3

2

¢

After change of summation order, we easily recognize that the internal power series,
as before, is the nothing else but the spherical Bessel’s function. Hence,

± (x) =
X
=0

X
=

(±1) + (x ) (2.412)

where

= (2 + 1)

µ
+

¶ r
2

+1 2( )

This formula provides determination of the expansion coe cients in (2.411). Say, because

divergence of H
( )±

and f
( )
for =1,2 is zero, then, evidently,

( )( )±
= 0

Projection of the first expansion in (2.411) on e is

H
(1)±

· e = ± =
X
=0

X
=

(±1) +
(1)(1)±

1

Also, (2.412) can be written as

± =
X
=0

X
=

(±1) + 1 1
1 ( 0 for | | )

therefore,
(1)(1) ±

= ± 1

The expression of H
(2) ±

in projections on e1 e2 has a form

H
(2)±

= ± ± e1
( + )

+ e2
( )

¸
;

developing ± into a series (2.412), one obtain

H
(2)±

=
X
=0

X
=

(±1) + +1
¡
e1

+1 + e2
1
¢

=

X
=0

X
=

(±1) +
¡
e1 + e2

1
¢
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Now, we recognize that the expression in the brackets is exactly f
(2)
+

( +1)
f
(1)
+1 , hence

H
(2)±

=
X
=0

X
=

(±1) +
³
± 1

f
(1)
+ f

(2)
´

from where
(2)(2)±

=
(2)(1)±

= ± 1

Taking into account the relations

H
(3)±

= ± + (4 3) ± e3

f
(3)
= +1 e1( + 2) 1

+1 + e2( + + 2) +1
+1 + ( + 1)(2 + 3) m

(3)

valid for the functions H
(3)±

and f
(3)
, we equalize the coe cients of bi-harmonic terms in

both the parts of equality to obtain
(3)(3)±

= ± +1 Calculation of curl of the third
equality in (2.411) and its projection on the complex Cartesian unit vectors e finalizes
the procedure; after some algebra we have

(3)(2)±
= 4(1 ) ;

(3)(2)±
= ( +1)

1 ± 2
0

2(2 1)

2 + 1
;

and the expansion formulae (2.411) are obtained.

Stress in an elastic half space containing a finite array of spheroidal inclusions

Investigation of stress and strain near the free or loaded boundary is of primary interest
from the standpoint of developing the micro-mechanical strength theory of composites,
since, in many cases, the fracture is a consequence of surface defects. In this subection,
the indicated problem will be considered in the framework of generalized self-consistent
method using the half-space 0 0 will be considered which contained spheroidal
inclusions as geometrical model of composite half-space. Previously this problem was
considered by Mura (1982) and Tsuchida et al (1987) in one-inclusion approximation and
and in the axisymmetric statement only.
The stress state of a half space is determined by the displacement vector u0 = ˆ · x ;

also, it is assumed that a plane boundary is traction-free

T (u(0)) =0 = 0 (2.413)

where
1

2
T (u) =

1 2
( · u) e + u+

1

2
e × ( × u)

is the traction vector on the surface = . If on the elements of the matrix ˆ the
following restrictions

13 = 13 = 0 ; ( 11 + 22) + (1 ) 33 = 0 ;
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are imposed then the traction vector (corresponding to u0) is zero for = . Condi-

tions on the matrix-inclusion interfaces =
( )
0 are in the form (2.362); for the sake of

simplicity, we assume that the axes of spheroids are parallel to the normal n = e .
In accordance with the superposition principle, we represent the displacement vector

in matrix in the form

u(0) = u0 +

Z Z 3X
=1

( )H
( )±
(r0)

+
X
=1

3X
=1

X
=0

X
=

( )( )
F
( )
(x )

where the integral densities and the arbitrary constants
( )( )

must by determined
from the conditions (2.362) and (2.413); the expression for the displacement vector in
the points of the th inclusion has the form (2.380). To satisfy the condition (2.403),
we transform the second part of (2.405) u2 to the Cartesian basis ( 0 0 0). This

transformation use integral representations of the exterior partial solutions F
( )
(2.366)

and the directly verified relations

H
( )±
(x ) = ± ( X0 )

h
H
( )±
(x0)

3
0 H

(1)±
(x0)

i
(2.414)

After corresponding substitutions and the change of an order of summation we arrive at
the following expression

u2 =

Z Z (
3X
=1

H
( )
(x0) ( X0 )

X
=1

3X
=1

X
=0

X
=

( )( )

×
h
( )( )

( ) 1
0

( )(3)
( )

i

Substituting (2.404) in (2.405) and, next, in (2.403) and taking into account the ac-
cepted condition T (u0) = 0 we have

Z Z (
3X
=1

T
³
H
( )+
´
+

3X
=1

T
³
H
( )
´ X

=1

± ( X0 )

×
3X
=1

X
=0

X
=

( )( ) (̂ )( )
= 0

where
(̂ )( )±

( 0 ) =
h
( )( )±

( )± 1
0

( )(3)±
( )

i

Calculation of the expressions T
³
H
( )+
´
is not a problem in view of the properties
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(2.408). In the terms of the vector harmonics L M and N (2.409) we have

1

2
T
³
H
(1)±
´
= (± ) [L ±M ] exp(± ) ;

1

2
T
³
H
(2)±
´
=
(± )

2
N exp(± ) ;

1

2
T
³
H
(3)±
´
= (± ) [(2 2± )L ± (2 1± )M ] exp(± )

Substituting (2.409) into (2.408) and taking into account of an orthogonality of these
harmonics, we get to a set of three algebraic equations which (in write matrix) have the
following form

+ (0) ·G + (0) ·
X
=1

( X0 )g
( )
= 0 (2.415)

where

G =
h

(1) (2) (3)
i

g
( )
=
h
(1)( ) (2)( ) (3)( )

i

( )( )
( 0 ) =

3X
=1

X
=0

X
=

( )( ) (̂ )( )
(2.416)

± ( ) =
1 0 (1 2 ) (± ) +
0 1 2 0
± 0 ± 2

Since det
¡

± ( )
¢
6= 0 for = 0, the set (2.410) is uniquely solvable for the integral

densities vector G . In the case when a traction is non-zero on the surface 0 = 0 the
right-hand side of (2.410) will have additional expression obtained by expansion of the
traction vector with respect to the set of the functions (2.409).
Satisfaction of contact conditions (2.362) requires transformation of the solution u(0)

to local coordinate system. So, in th spheroid’s coordinate system the expression u2
have the following form

u2 =
3X
=1

X
=0

X
=

h
( )( )

F
( )
(x )+

( )( )
f
( )
(x )

i
(2.417)

where
( )( )

is clear from the formula (2.411). By applying the relations inverse to (2.414),
for u1 we find

u1 =

Z Z
+ ( 0 )

3X
=1

( )
h
H
( )+
(x )+ 3

0 H
( )+
(x )

i

=

Z Z
+ (X0 )

3X
=1

˜ ( )H
( )+
(x )
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where ˜ = + 1
0 3 Substituting the formulae (2.411) into the last expression,

after some transformations, gives us

u1 =
3X
=1

X
=0

X
=

f
( )
(x )

Z Z £
+ (X0 )

3X
=1

( )( )± ˜ ( )
i

(2.418)

Relations (2.381), (2.417) and (2.418) determine the form of displacement vector
(2.405) in the th base, completely. Further run for solution of the problem repeats,
with minor deviations, that was exposed in the previous subsection; the only di erence is
the term (2.418). As a result, we arrive at an infinite set of linear algebraic equations of
the type (2.389), in so doing, the equation (2.411) is used to exclude the unknown vector
from this set. Numerical solution of this system enables calculation of the displacement
vector, stress and strain tensor in the matrix and in the inclusion with accuracy deter-
mining by the maximum value of the index into the expression for displacement vector
u(0) (2.405), used in practical calculations. Noteworthy, using more complicated math
for solution of these problem makes numerical realization of the method more involved in
comparison with the method used for unbounded composite study.
It may be noted also that the assumption regarding orientation of spheroids is not

restrictive. The case of their arbitrary orientation can be considered analogously. In so
doing, transformation of u2 to the form (2.404) uses also the re-expansion formulae due
to rotation of the coordinate system (2.374), (2.375).

2.4.7 Application to the composite mechanics problems

Averaged stress h i( )

The general solution derived above provides fast and accurate local stress field evaluation
in any point of the piece-homogeneous domain with spheroidal interfaces. Based on it, the
”phase-averaged” stress playing an important role in the micromechanics can be readily
evaluated; yet another advantage of the analytical framework developed here is that such
an averaging can be done analytically and gives the simple and exact finite-form formulae.
Let us find an expression of

h i( ) =
1
ZZZ

(x) x (2.419)

where = 4
3
( 1)

2
3 is the volume of th inclusion. Inside this inclusion, in accordance

with (2.364) and (2.365),

(x) = L( )
1

2

h
u +( u )

i
(2.420)

where the displacement u is given by eqn (2.380). Substituting (2.420) into (2.419) and
applying the Gauss’ theorem gives us

h i( ) = L
( ) 1

2

ZZ
(nu + u n) (2.421)
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and, thus, the problem is reduced to evaluation of the integrals of kind

ZZ
or,

with the (2.367) taken into account,

ZZ
(x ) As shown elsewhere (Kushch,

1998b), only a few of them are nonzero, namelyZZ
3
0
1 (x ) =

4

3

³
0

´2
0 = ; (2.422)

ZZ
( 1 + 2)

1
1 (x ) =

ZZ
( 1 2)

1
1 (x ) =

2

After simple algebra, one obtains the averaged strains

h 11i( ) =
( )
0

(3)( )
00

1

2

³
(1)( )
20 Re

(1)( )
22

´
; (2.423)

h 22i( ) =
( )
0

(3)( )
00

1

2

³
(1)( )
20 +Re

(1)( )
22

´
;

h 33i( ) =
( )
0

(3)( )
00 +

(1)( )
20 ;³

h 13i( ) h 23i( )

´
=

(1)( )
21 ;

h 12i( ) =
1

2
Im

(1)( )
22 ;

where
( )
0 = 2(2 1) 3

Noteworthy, the right hand sides of (2.423) contain the expansion coe cients
( )( )

entering the vector

D
( )
1 =

³
(3)( )
00

(2)( )
10

(2)( )
11

(1)( )
20

(1)( )
21

(1)( )
22

´
(2.424)

only. Using also standard reduction notation for the symmetric second-rank tensors (e.g.,

1 = 11 2 = 22 3 = 33 4 = 13 5 = 23 and 6 = 12 ), we rewrite eqn (2.423) in
the matrix form:

h i( ) = P
( )D

( )
1 (2.425)

where

P( ) =
1

( )
0 0 0 1 2 0 1 2
( )
0 0 0 1 2 0 1 2
( )
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0
0 0 0 0 0 2

(2.426)

The resulting expression of average stress

h i( ) = L
( )P( )D

( )
1 (2.427)

is valid for any geometry, phase elastic properties and loading type provided is constant
in the domain occupied by th inclusion.
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One-inclusion problem: explicit expression

In what follows, we will need a solution of one-inclusion problem being a simple particular
case of many-inclusion problem considered above. Specifically, we put L( ) = L(0)( =
1 2 ) and = 0 ( 6= ) to get a problem where the transformation stress is
a sole governing parameter. The well-known fact is that such a problem possesses an
analytical, Eshelby-type solution: we recover it from the general one (2.389) by putting

a
( )
= 0 and = 1. In this solution, only the unknowns, or multipole strengths,

( )( )

entering the vector

A
( )
1 =

³
(1)( )
00

(2)( )
10

(2)( )
11

(3)( )
20

(3)( )
21

(3)( )
22

´
(2.428)

are nonzero and can be found from (2.389) as

A
( )
1 = ( 1)

1T where 1 = 1( 0) ( 1( 0))
1

1( 0) 1( 0) (2.429)

Despite rather complicated structure of the matrix 1, the resulting explicit expres-
sions

(1)( )
00 =

(0)
0

4 0(1 0)
( |11 + |22 + |33); (2.430)

(2)( )
10 =

2 0

¡
|11 + |22

¢
;

(2)( )
11 =

4 0
(1 1 2 )

¡
|13 |23

¢
;

(3)( )
20 =

8 0(1 0)

¡
|11 + |22 2 |33

¢
;

(3)( )
21 =

8 0(1 0)
(1 + 1 2 )

¡
|13 |23

¢
;

(3)( )
22 =

16 0(1 0)

¡
|22 |11 + 2 |12

¢
;

are amazingly simple and give clear insight into the nature of the singular vectorial func-

tions F
( )
(2.366). In the eqn (2.430), = 0

³
0

´2
and = 0 0 It is convenient to

rewrite (2.430) as

A
( )
1 = R( ) (2.431)

where

R( ) =
2 0(1 0)

(0)
0 2

(0)
0 2

(0)
0 2 0 0 0

(1 0) (1 0) 0 0 0 0

0 0 0 (1 0)
2

³
1 1

2

´
1
2

³
1 1

2

´
0

1 4 1 4 1 2 1 0 0

0 0 0 (1 0)
4

³
1 + 1

2

´
1
4

³
1 + 1

2

´
0

1 8 1 8 0 0 0 4
(2.432)
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Given A
( )
1 , the coe cients D

( )
1 can be obtained, say, from (2.385), where we put

a
( )
= 0 and = 1 as well:

D
( )
1 = ( 1( 0))

1
1( 0)A

( )
1 = Q( )A

( )
1 (2.433)

where the following elements of the matrix Q( ) =
n

( )
o
are nonzero (for brevity sake,

the index is omitted):

11 =
1

3
(0)
0

¡ ¢2 ; 22 =
1
1 ; 33 = 2

0
1

1
1 ; (2.434)

44 =
2

3

³
0
2 + 4

(0)
0

0
1

´
+
1

3

h
1
2 +

³
1 2

(0)
0

´
1
1

i
;

55 =
1

2

³
1
2 + 3

(0)
0

1
1

´
+
1

2

h
0
2 + 2

³
1 3

(0)
0

´
0
1

i
;

66 =
1 h 1

2 + 3
³
1 4

(0)
0

´
1
1

i
;

41 =
1

3

¡
2 0

1 + 1
1

¢
; 53 =

1

2

¡
2 0

1 + 1
1

¢
;

14 =
1

(1 2 0)

³
0
2 2

(0)
0

0
1

´
+

1

2(1 2 0)

h
1
2 +

³
1 2

(0)
0

´
1
1

i

Here, =
( )
0 and =

³
( )
0

´
are the associated Legendre functions of second kind.

Thus, the displacement caused by the transformation stress takes the following
finite form:

u =
3X
=1

X
| |6( 1)

(4 )( )
1 f

(4 )
1 (x ) (2.435)

inside the th inclusion and

u =
3X
=1

X
| |6( 1)

( )( )
1 F

( )
1 (x ) (2.436)

outside of it. The corresponding stress tensor is given by

(x) =

½L(0) 1
2

h
u +( u )

i
x ;

L(0) 1
2

h
u+( u)

i
otherwise;

(2.437)

and, after substitution here the eqns (2.435) and (2.436), can be written as

(x) =

½
L(0) ( ) (x X )D

( )
1 x ;

L(0) ( ) (x X )A
( )
1 otherwise;

(2.438)

where the matrices and are obtained by di erentiating the functions f
(4 )
1 and F

( )
1

respectively, with respect to local Cartesian coordinates. Note, finally, that unlike the
Eshelby’s solution, the formulae derived apply equally to the prolate and oblate spheroids
including the limiting cases of needle-like and penny-like shapes.
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Evaluation of the tensors T and T

The theory exposed can be applied, in particular, to evaluate the tensor T (x X )
introduced as (Buryachenko and Pagano, 2003)

(x) =

Z
(x y) y = T (x X ) (2.439)

Indeed, substitution of (2.431) and (2.433) into (2.438) and subsequent comparison with
(2.439) gives the desired explicit representation

T (x X ) =

½
L(0) ( ) (x X )Q( )R( ) I x ;

L(0) ( ) (x X )R( ) otherwise
(2.440)

(I being the unit tensor), which is valid in any point including the region occupied by th
inclusion ( 6= )
Another problem, addressed in (Buryachenko and Pagano, 2003), consists in evaluating

the tensor defined by

T (X X ) = hT (x X )i( ) =
1
ZZZ

T (x X ) x (2.441)

where T is given by eqn (2.439). The most straightforward way here is to integrate
(2.441) numerically using the known analytical expression of T (2.440). An alternate,
however, much more elegant and ”power-saving” analytical way consists in utilizing the
theory developed for many-inclusion problem. In the case of identical spherical inclusions,
the tensor T has been found by Willis and Acton (1976), among others. Here, we derive
it in the case of arbitrarily sized, shaped, positioned and orientated spheroidal inclusions.
First, we note that due to conditions L( ) = L(0)( = 1 2 ) and = 0 ( 6= )

assumed above, no disturbance fields are expected around the inclusions others than th
one. It follows from (2.378) and (2.379) that in this case all the unknowns A

( )
= 0

for 6= = 1 2 The inclusion-related coe cients D
( )
are, however, nonzero in a

general case: so, the eqns (2.385) and (2.400) give us

D
( )
= a

( )
=

( )( )
1 A

( )
1 (2.442)

provided = 0 and A
( )
= 0 for 1. In other words, in the case L( ) = L(0)

the solution u can be thought as a local expansion in a vicinity of the point X of the
disturbance field u (2.389) caused by the inclusion centered at X .
Now, we combine the eqns (2.439) and (2.441) to write

T (X X ) =
1
h i( ) (2.443)

Averaging of stress inside the inclusion is done already: applying the eqn (2.427) and then
(2.439) to (2.443) results in

T (X X ) =
1
L(0)P( )

( )( )
11 A

( )
1 (2.444)
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The vector A
( )
1 , in turn, is related linearly to . Taking account of eqn (2.431) gives the

final formula:

T (X X ) =
1
L(0)P( )

( )( )
11 R( ) (2.445)

where the constant matrices P( ) and R( ) are given by the eqns (2.426) and (2.432),

respectively. In (2.445),
( )( )
11 is the only distance X = X X and orientation

dependent term which can be evaluated either by utilizing the re-expansion formulae or,
alternatively, with aid of the numerical technique developed in the framework of present
work

In the next section the above developed theory will be applied to evaluate the e ective
thermoelastic properties of random structure composites reinforced by the clusters of
deterministic structure typical for the clay nanocomposites (see Buryachenko, Kushch
and Roy (2005) for detals).
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2.5 E ective thermoelastic properties of random struc-

ture composites reinforced by the clusters of de-

terministic structure (application to clay nanocom-

posites)

2.5.1 Introduction

A considerable number of methods are known in the linear theory of statistically homoge-
neous composites; appropriate, but by no means exhaustive, references are provided by the
reviews of Christensen (1979) Willis (1981), Mura (1987), Nemat—Nasser and Hori (1993),
Buryachenko (2001), Torquato (2002), Milton (2003). It appears today that variants of
self consistent (or e ective medium) method (Kröner, 1958) the mean field method (Mori
and Tanaka, 1973; Benveniste, 1987) are the most popular and widely used methods. The
notion of an e ective field in which each particle is located is a basic concept of such
powerful methods in micromechanics as the methods of self-consistent fields and e ective
fields (see for references Buryachenko, 2001). The “quasi-crystalline" approximation by
Lax (1952) is often used for truncation of the hierarchy of integral equations equations
involved leading to neglect of direct multiparticle interactions of inclusions. The last de-
ficiency was overcome recently by the multiparticle e ective field method (MEFM), put
forward and developed by one of the authors (references may be found in the survey by
Buryachenko, 2001) The MEFM is based on the theory of functions of random variables
and Green’s functions. Within this method a hierarchy of statistical moment equations
for conditional averages of the stresses in the inclusions is derived. The hierarchy is es-
tablished by introducing the notion of an e ective field. In this way the interaction of
di erent inclusions is taken directly into account.
Significantly less research has been performed for statistically inhomogeneous com-

posites. In such a case, the ergodicity fails and ensemble and averages do not coincide.
The degenerate case of this materials is a random matrix composite bounded in some
directions as well as the composites medium for that the inclusions are located in a re-
gion bounded in some directions although unrestricted Ness of the domain of inclusion
locations does not preclude statistical inhomogeneity. For example, any laminated com-
posite materials with randomly reinforced by aligned fibers in each ply, is a statistically
inhomogeneous material.
A particular case of composite materials containing particle-reach and particle-poor

regions is the clustered materials where such regions have a concrete shape and random
locations that does not assumes the loss of statistical homogeneity of the composite struc-
ture. We will analyze in this paper a special sort of clustered materials which are polymeric
composites reinforced with clay crystals of nanometer scale recently attracted tremendous
attention in the material society. A general comprehensive review of the various types of
nanocomposites was given by Komarneni (1992). A particular class of nanocomposites
is clay nanocomposites (see e.g Giannelis, 1996; Luo and Daniel, 2003; Fornes and Paul,
2003; Wang and Pyrz, 2004a,b; Sheng et al., 2004 where additional references can be
found). In general, layered silicate-reinforced presenting many challenges for mechanics
are conditionally divided into three types ( see Giannelis et al., 1999; Carrado, 2003):
conventional composites where the layered silicate is presented as the original aggregate
state of the clay particles (tactoids) with no intercalation of the matrix material into the
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layered silicate; intercalated nanocomposites (modeled in this paper) where the matrix
material is inserted in the form of thin (a few nm) layers into the space between the
parallel silicate layers of extremely small thickness ( 1nm); completely exfoliated or
delaminated nanocomposites were the individual silicate platelets of 1nm thickness are
randomly dispersed in a continuous polymer matrix (see e.g. Usuki et al.,1993). Although,
of course, it is possible that some portion of nanocomposites forms the exfoliation morphol-
ogy and the other remains the intercalation morphology (see Koo et al., 2003). Layered
silicate based polymer nanocomposites have gained significant technological interest be-
cause of the recent commercialization of nylon 6 and polypropylene based materials (see
e.g. Krishnamoorti and Yurekli, 2001; Kiersnowski and Piglowski, 2004). Generally, exfo-
liated nanocomposites demonstrate better properties than intercalated ones at the same
nanoplate concentration. Completely exfoliated nanocomposites were intensively analyzed
in the framework of conventional micromechanics by the Mori and Tanaka (1973) method
(MTM, see Hui and Shia, 1998; Masenelly-Varlot et al., 2002; Wang and Pyrz, 2004),
by Halpin-Tsai (see Halpin and Cardos, 1976) equation (Brune and Bicerano, 2002), by
the generalized Takayanagi’s model method taking the interphase properties into account
(see Ji, 2002). However, exfoliation of layered minerals is seriously hampered by the fact
that sheet-like materials exhibit a strong tendency to agglomeration due to their big con-
tact surfaces. So, the rations surface to volume increase much steeper with respect to
the aspect ratios for sheets compared to rods (see e.g. Fisher, 2003). Single clay layers
were proposed to be an ideal reinforcing agent due to their extremely small aspect ratio
( = 0 001 0 01), the nanometer filler thickness being comparable to the scale of the
polymer chain structure, as well as to their high sti ness (200 400GPa). A doubling
of the tensile modulus and strength is achieved, and the heat distortion temperature
increases by 100 C for nylon-layered silicate nanocomposites containing as little as 2%
vol. nanoplates. Polymer/clay nanocomposites Most notable are also the enhancements of
other unexpected physical properties including barrier, flammability resistance, ablation
performance, atomic oxygen resistance, and impact strength (see for references Lincoln et
al., 2001; Ray and Okamoto, 2003; Sheng et al., 2004), which occur with only a few percent
addition of nanoplates leading to reduced price in term of filler concentration and retention
of polymeric processability. There are already existing applications of such nanocompos-
ites, and many appealing expectations regarding their potential. A small aspect ratio of
nanoplates provides a ultra-large interfacial area between the constituents ( 750m2 per
gram of silicate material) and a small distance between the nanoelements approaching
molecular dimensions such that for a system comprising of 1nm thick plates, the distance
between plates (considered as discs with a diameter 1 ) approaches 10 nm at only 7 vol.
% of plates (see Vaia and Krishnamoorti, 2002; Vaia and Lincoln, 2002). Due to the high
surface area and small inter-layer distances, the silicate platelets can, in principle, change
the properties of polymer matrix due to the changing of polymer morphology and chain
confirmation. So Vaia and Giannelis (2001) emphasized that the presence of many chains
at interfaces means that much of the polymer is really ‘interphase-like’ instead of having
bulk-like properties that modify the thermodynamics of polymer chain confirmations and
kinetics of chain motion. Thus, many mechanical, physical, and chemical factors could
potentially formate the properties of nanocomposites, and the better understanding of
their relative contributions is needed. A fundamental question is whether we consider the
properties of each phase the same as in the absent of another phases and, therefore pure
mechanical interaction between the phases is assumed, or whether one has to account
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for physical and chemical e ects the filler has on the matrix. In principle, comparison
of observed experimental and predicted modeling behaviors allows for answering on this
question that the nanocomposite properties are due to changes in the polymer matrix
induced by the nanoelements or not. A question of a correct choice of a micromechanical
model applicable to nanocomposites presents many challenges for mechanics and will be
considered in this paper from the point of view of allowing for the clustering e ect in the
clay nanocomposites.
Even though the di erent fractal descriptors are used for the identification of clustered

structures, it is not su cient to predict the overall properties of composites due to a few
reasons. The first one is that these parameters do not complete enough for the characteri-
zation of the micromorphology of fillers simple because one can present other morphology
with the same descriptors. More informative characteristics of the random configurations
use statistical second-order quantities which examine the association fillers relative to
other particle in an immediate local neighborhood of the reference filler. Other one that
is that the prediction of mechanical properties requires one or another micromechanical
model. Bruce and Bicerano (2002), as well as Sheng et al. (2004) (see also Kornmann,
2001) have emphasized that the notions of the matrix and inclusions widely used in con-
ventional micromechanics can no longe be directly applied to nanoclay composites due
to the hierarchical structure of clusters which, nevertheless, can be treated as a sort of
equivalent (on e ective) inhomogeneities embedded, in turn, in the bulk matrix material.
Description of the composite cluster structure as well as a micromechanical modeling are
significantly simplified in the case of clusters of a deterministic structure. In the most
part such the clusters (called then the clusters of periodic structure) can be described as
“cutted-out" from the infinite periodic media. A popular micromechanical modeling can
be conditionally described by two limiting kinds of approaches both of then are based
on the concept of e ective properties of clusters. In the first case the e ective proper-
ties of a cluster are estimated for the infinite periodic media (as well as for the infinite
statistically homogeneous media) from which a cluster was mentally “cutted-out". The
e ective properties of the layered clusters were estimated by Halpin-Tsai equation (see
Halpin and Kardos, 1976; Brune and Bicerano, 2002) and by Mori and Tanaka (1993)
method (MTM, see Wang and Pyrz, 2004b). Among the related approaches concerned
with the conventional clustered random structure composites, it might be well to point
out the analysis of clustered fiber composites by Bhattacharyya and Lagoudas (2000) by
the MTM (see also analysis of nanofiber composites by Shi et al., 2004). In the second
sort of approaches based on the “cutted-out" of a cluster, the e ective elastic properties
of a cluster extracted from the composite is estimated through the equalization of the
strain energy function at the set of inclusions combining the cluster to the potential en-
ergy stored in a homogeneous area with e ective properties and the sizes of the cluster.
It should be mentioned that the choice of the area referred as a cluster and “cutted-
out" from the composite for the forthcoming analysis by one or another micromechanical
method is not unique and defined by a subjective partiality of a researcher. So, in both
papers by Luo and Daniel (2003) and by Sheng et al. (2004), the silicate aligned clusters in
nanocomposites of random structure were modeled in the framework of laminated theory
(see e.g. Cristensen, 1979) as the laminated structures containing silicate plates with the
thickness separated by the matrix layer of the thickness . However, Luo and Daniel
(2003) estimated the e ective properties of a cluster bounded by two matrix layers 2
in thick that with necessity leads to an invariance of the cluster e ective moduli on the
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layer number . Sheng et al. (2004) (see also Brune and Bicerano, 2002) have proposed
an alternative cluster bounded by two silicate plates that yields the dependence of the
cluster e ective moduli on simply because the volume concentration of silica in such a
cluster is not a constant ( + ) as in the model by Luo and Daniel (2003) but varies
from 2 (2 + ) at = 2 till ( + ) at = .
The modeling and simulation of random nano- andmicro-structures are becoming more

and more ambitious due to the advances in modern computer software and hardware (see
Buryachenko, 2004). In so doing, the combination of computational micromechanics with
analytical micromechanics seems to be very promising because it allows for exploring the
most powerful features of the both mentioned gropes of methods. The so-called numerical
MEFM presents a universally rigorous scheme of both analyses of the microstructures and
prediction of macroscopic properties and the statistical distributions of the local stress
fields. One of the main advantages of the MEFM is in an e cient calculation of the general
integral equations, which allows for hierarchical improvement of the method. Numerical
solutions can be used to construct concentration factors for single and a finite number
of interacting clustered inclusions in the infinite matrix, which then can be incorporated
into the general framework of analytical micromechanics (such as e.g. the MEFM). In
this light, the method of solution of a finite number of interacting spheroidal inclusions
developed one from the authors (see Kushch, 1996, 1997, 1998a,b) and based on the
multipole expansion technique is best suited for incorporation into the numerical MEFM.
The basic idea of method consists in expansion the displacement vector into a series over
the set of vectorial functions satisfying the governing equations of elastic equilibrium.
The re-expansion formulae derived for these functions provide exact satisfaction of the
interfacial boundary conditions. Incorporation of the multipole expansion technique into
the MEFM in this paper will make possible to abandon from the majority of simplified
assumptions exploring at the analysis of random structure composites reinforced by the
clusters of deterministic structure.
However, the mechanical and thermal properties of nanoelements have not often been

measured due to the di culties of creating homogeneous and uniform samples subjected
to homogeneous loading. As a result, it is desirable to develop the model forming the
mechanical properties of nanoelements over their unique topology that may overcome the
limitations of atomistic simulation concerning the wide range of length scale (10 9-10 6m).
Unlike many other fields in science and engineering, the evolution of NT to its current
level significantly depends on the contributions from modeling and simulation (see e.g.
Thostenson, et al. 2001; Qian, et al. 2002; Zhang, et al. 2002; Friesecke and James, 2000;
Odegard, et al. 2003). Computational approaches, based on the molecular dynamic (MD)
approach, are currently limited to nanoscale and cannot deal with the micro-length scales
which should be analyzed by a continuum mechanics approach. These studies rely on
fitting of atomistic simulation results to determine the important elastic parameters such
as elastic moduli that implicitly assumes a local nature of constitutive law of continuum
mechanics at the nanoscale based, in turn, on the assumption that a field scale (internal
stress inhomogeneity) infinitely exceeds a material scale (molecular inhomogeneity) (see
the papers mentioned above). In the case of comparable scales of a molecular scale of
analyzed structures and the scale of inhomogeneity of internal stresses, that with necessity
yields nonlocal character of the constitutive law in the area of coupling of the mentioned
scales, this popular basic assumption acting as a bridge between nano- andmicromechanics
can be considered as an approximation of the real nonlocal constitutive law (see e.g.
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Buryachenko, 2001). The most challenging issue of nanotechnology (see Ghoneim, 2003;
Buryachenko, 2004) is how mechanics can contribute to our understanding of the bridging
mechanism between the coupled scales, which is described by the nonlocal constitutive
equations involving the parameters of a relevant e ective nonlocal operator with the
nanostructure. However, a creation of such the bridging mechanism is beyond the scope
of the current work and will be concerned with the forthcoming publications. In this paper
only continuum mechanics approach will be explored with known thermoelastic properties
of constituent phases.
The present analysis should be make it clear that micromechanical modeling based

on continuum mechanics must be used with caution for nanocomposites. The goal of this
paper is to better understand the origin of the reinforcing e ciency of clustered nanocom-
posites. Due to their relative simplicity and instantaneousity, the micromechanical model
proposed provides the ability to evaluate the key factors controlling the e ective elastic be-
havior, and to explore large design spaces. The model accounting for the existence of both
exfoliation and intercalation explains the reduction of the reinforcement e ciency of clay
nano plates as a result of the incomplete exfoliation (or clustering). Detailed parametric
analyses demonstrate the influence on the e ective elastic moduli and stress concentrator
factors of such the key factors as: a shape of nanoelements, interlayer distance, and the
number of nanoelements in the stacks of deterministic structure.

2.5.2 Preliminaries

Basic equations

Let a linear elastic body occupy an open bounded domain 3 with a smooth bound-
ary and with a characteristic function . The domain contains a homogeneous
matrix (0) and a statistically homogeneous set = ( ) of clusters with characteris-
tic functions and bounded by the closed smooth surfaces ( = 1 2 ). It is assumed
that the clusters can be grouped into components (phases) ( ) ( = 1 2 ) with
identical mechanical and geometrical properties (such as the shape, size, orientation, and
microstructure of clusters). At first no restrictions are imposed on the elastic symmetry
of the phases or on the geometry of the clusters. The local strain tensor is related to
the displacements u via the linearized strain—displacement equation

=
1

2
[ u+ ( u)>] (2.446)

Here denotes tensor product, and ( )> denotes matrix transposition. The stress tensor,
, satisfies the equilibrium equation (no body force acting):

· = 0 (2.447)

Stresses and strains are related to each other via the constitutive equations

(x) = L(x) (x) + (x) or (x) =M(x) (x) + (x) (2.448)

where L(x) and M(x) L(x) 1 are the known phase sti ness and compliance fourth-
order tensors, and the common notation for contracted products has been employed:
L = . (x) and (x) L(x) (x) are second-order tensors of local eigenstrains
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and eigenstresses. In particular, for isotropic constituents the local sti ness tensor L(x)
is given in terms of the local bulk modulus (x) and the local shear modulus (x), and
the local eigenstrain (x) is given in terms of the bulk component 0(x) by the relations:

L(x) = (3 2 ) 3 (x)N1 + 2 (x)N2 (x) = 0(x) (2.449)

N1 = N2 = I N1; and I are the unit second-order and fourth-order tensors.
By virtue of the isotropic elastic moduli (2.449), we arrive at the Navier equation

· = (1 2 ) u+ ( · u) = 0 (2.450)

where = (3 2 ) (6 + 2 ) is a Poisson ratio. All tensors f (f = L M ) of

material properties are decomposed as f f (0) + f1(x) = f
(0) + f

( )
1 (x). Here and in the

following, the upper index ( ) indicates the components and the lower index indicates
the individual cluster; (0) = \ , ( ) (x) =

P
( ) =

P
(x), and

( )(x) is a characteristic function of ( ) equals 1 at x ( ) and 0 otherwise, ( =
0 ; = 1 2 ; = 1 2 ).
It is assumed that each cluster of the component has a deterministic identical struc-

ture meaning that in the local coordinate system e
( )
( = 1 2 3) connected with the

each cluster ( ) the geometrical and mechanical properties of inclusions embedded
in this cluster are identical. In this local coordinate system e

( )
the inclusions ( )

( = 1 ( ) = 1 ) with characteristic functions and mechanical properties

f
( )
(z) (f = L M ) have the centers z .
We assume that the phases (the inclusions and matrix) are perfectly bonded, so

that the displacements and the traction components are continuous across the interphase
boundaries, i.e.

[[ n]] = 0 [[u]] = 0 (2.451)

on the interface boundary where n is the normal vector on and [[( )]] is a jump
operator. The traction

t(x) = (x)n(x) = [L(x) (x) + (x)]n(x) (2.452)

acting on any plane with the normal n(x) through the point x can be represented in terms
of displacements t(x) = t̂(n )u(x) + (x)n, where ˆ (n ) = (x) . is the
so-called “stress operator." The boundary conditions at the interface boundary will be
considered together with one from the homogeneous boundary conditions on with the
unit outward normal n

u(x) = x (x) const x (2.453)

t (x) (x)n (x) (x) = const x (2.454)

where (x) = 1
2

£
u (x)+( u (x))>

¤
x . We will consider the interior problem

when the body occupies the interior domain with respect to .

Statistical description of the composite microstructure

It is assumed that the representative mesodomain contains sorts of statistically large
number of clusters ( ) ( = 1 2 ; = 1 2 ) with characteristic functions
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(x) described by the statistically homogeneous random field. All the random quantities
under discussion are statistically homogeneous and, hence, the ensemble averaging could
be replaced by volume averaging

h( )i = 1

Z
( ) (x) x h( )i( ) = [

( )
] 1

Z
( ) ( )(x) x (2.455)

where
P

( ) =
P

= 1 2 ; = 1 2 . ( ) is the characteristic
functions of ( ). The bar appearing above the region represents its measure, e.g. 1 mes
. The average over component ( ) agrees with the ensemble average over an individual

cluster ( ) ( = 1 2 ) : h( )i = h( )i( ); the notation h( )i (x) at x
means the average over an ensemble realization of surrounding clusters (but not over the
volume of a particular cluster, in contrast to h( )i( )).
For the description of the random structure of a composite material let us introduce a

conditional probability density ( x | 1 x1 x ), which is a probability density
to find the -th cluster with the center x in the domain with fixed clusters 1

with the centers x1 x . The notation
( x |; 1 x1 x ) denotes the case x 6= x1 x . Of course,
( x |; 1 x1 x ) = 0 for values of x lying inside the “included volumes”
0 ( = 1 ), where 0 with characteristic functions 0 (since in-

clusions cannot overlap), and ( x |; 1 x1 x ) ( x ) at |x x |
= 1 (since no long-range order is assumed). For the sake of simplicity of

forthcoming calculations we will assume the hypothesis

( x |; x ) = 2( ) | (a0) 1(x x ) | (2.456)

where (a0) 1 identifies a matrix of a ne transformation which transfers 0 being the el-
lipsoidal “included volume" (“correlation hole") into a unit sphere. In so doing, the shape
of “correlation hole" 0 does not depend on the inclusion : 0 = 0. For spherical
inclusions the relation (2.455) is realized for a statistical isotropy of the composite struc-
ture. Only if the pair distribution function (x x ) ( x |; x ) ( ) depends on
|x x | it is called the radial distribution function. ( ) is a number density ( ) of clus-
ters of the kind ( ) 3 and ( ) is the concentration, i.e. volume fraction, of the clusters
( ): ( ) = h ( )(x)i = ( ) ( = 1 2 ; = 1 2 ) (0) = 1 h i Hereinafter
we will use the notations h( )i(x) and h( )| 1 x1; ; x i(x) for the average and for the
conditional average taken for the ensemble of a statistically homogeneous field = ( )
at the point x, on the condition that there are clusters at the points x1 x and x1 6=
6= x . Similarly, (x| 1 x1; ; x ) is a random characteristic function of clusters

x under the condition that 1 6= 6= . The notations h( )|; 1 x1; ; x i(x)
and (x|; 1 x1; ; x ) are used for the case x 1 . The notation for the
conditional probability density ( x |; 1 x1 x ;x0) is considered under the
condition that the inclusions 1 are located at the points x1 x , whereas the
matrix position is denoted by x0.

E ective fields and statistical averages

A general integral equation describing the stress field in random structure composites is
known (see for references e.g. Buryachenko, 2001)

(x) = h i(x) +

Z
(x y) { (y) h i(y)} y (2.457)
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where we define the tensor (y) =M1(y) (y)+ 1(y) called the strain polarization tensor
which is simply a notational convenience. The kernel, (x y) L(0)

£
I (x y) +U(x y)L(0)

¤
called the Green stress tensor is defined by the second derivative U of the infinite-
homogeneous-body Green’s function G of the Navier’ equation with an elastic modu-
lus tensor L(0):

©
L(0) 1

2

£
G(x)+ ( G(x))>

¤ª
= (x) vanishing at infinity

(|x| ), (x) is the Dirac delta function.
Let the clusters 1 be fixed and we define two sorts of e ective fields (x)

and e1 (x) ( = 1 ; x 1 ) by the use of the rearrangement of Eq.
(2.457) in the following form [see Buryachenko (2001) for the earliest references of related
manipulations]

(x) = (x) +

Z
(x y) (y) (y) y (2.458)

(x) = e1 (x) +
X
6=

Z
(x y) (y) (y) y (2.459)

e1 (x) = h i(x)

+

Z
(x y)

©
(y) (y|; 1 x1; ; x ) h i(y)

ª
y (2.460)

for x = 1 2 . Then, considering some conditional statistical averages of
the general integral equation (2.457) leads to an infinite system of integral equations
( = 1 2 )

h | 1 x1; ; x i(x)
X
=1

Z
(x y)h (y) | 1 x1; ; x i(y) y (2.461)

= h i(x) +

Z
(x y)

©
h |; 1 x1; ; x i(y) h i(y)

ª
y

where x 1 in the n-th line of the system.
The definitions of the e ective fields (x), e1 2 (x) as well as their statistical aver-

ages h i(x), he1 2 i(x) are nothing more than notation convenience for di erent terms
of the infinite systems (2.461).

2.5.3 Approximate and closure e ective field hypotheses

In order to simplify the exact system (2.458) we now apply the main hypothesis of many
micromechanical methods, the approximation called the e ective field hypothesis:
H1) Each cluster has an ellipsoidal form and is located in the field (2.459)

(y) (x ) (y ) (2.462)

which is homogeneous over the cluster , and the perturbation introduced by the cluster
at the point y is defined by the relationZ

(y x) (x) (x) x = ¯ T (y x ) (2.463)

Hereafter h (x) (x)i( ) is an average over the volume of the cluster (but not over
the ensemble), h( )i hh( )i( )i, and the tensors
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T (y x ) =

½R
(y x) (x) x Q for yR
(y x) (x) x 0 otherwise

T (x x ) = hT (z x )i (2.464)

(z 6= ) have analytical representations for spherical inclusions in an isotropic
matrix (see for reference Buryachenko, 2001). The tensor Q is associated with the well-
known Eshelby tensor by S = I M(0)Q .
For the termination of the hierarchy of statistical moment equations (2.461) we will

use the closure e ective field hypothesis:
H2) For a su ciently large , we complete the system (2.461) by the assumption

he1 +1(x)i = he1 (x)i , where the right-hand-side of the equality does not contain
the index 6= ( = 1 ; = 1 + 1; x ).
The fundamental di erences of the hypothesis H2 and “quasi-crystalline" approxima-

tion by Lax (1952)
h (x)| x ; x i = h i x (2.465)

as well as of the assumptions (2.462) and (2.463) were discussed by Buryachenko (2001).
According to hypothesis H1 and in view of the linearity of the problem there exist

constant fourth and second-rank tensors B (x) R (x) and C (x) F (x), such that

(x) = B (x) (x ) +C (x) (x) = R (x) (x ) + F (x) x (2.466)

where ( ) andR (x) = ¯ M
( )
1 (x)B (x) F (x) = ¯ [M

( )
1 (x)C (x)+ 1(x)] Accord-

ing to Eshelby’s (1957) theorem there are the following relations between the averaged
tensors (2.466) R = Q 1(I B ) F = Q 1C where the notation of a mate-
rial tensor f without argument x stands their average over the volume of the cluster
: f hf(x)i( ) (f stands for B C R F). In parallel with the notation of the average

material tensor f over the cluster we will also use the notation f ( ) underlining that
the average is carried out over th sort of clusters ( ) also these averages coincide for

( ). It should be mentioned that the field (x ) can vary with the location of the
center x of the cluster considered, but the field (y) (y ) is homogeneous over the
cluster . Because of this the application of Eshelby’s theorem is correct.
It should be mentioned that for clustered materials being considered R (x)

F (x) 0 for the matrix’s part of the cluster x ( ) \ ( = 1 ( ); =
1 ). Therefore,

R( ) =

( )X
=1

Z
M

( )
1 (x)B

( )
(x) x (2.467)

F( ) =

( )X
=1

Z h
M

( )
1 (x)C

( )
(x) +

( )
1

i
x (2.468)

where f ( )(x) = f
( )
(x) at x ( ). As can be seen from Eq. (2.467) and (2.468)

the concentrator tensors R( ) and F( ) do not depend explicitly on the shape and the
size of the cluster but only on the geometrical and mechanical properties of inclusions
constituent the cluster . This dependence becomes apparent thought the tensors
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B (x) and C (x) describing the thermoelastic solution (considered in Section 6) for ( )

interacting inclusions ( = 1 ( )) inside infinite matrix subjected to the remote

homogeneous loading (x ). Therefore the tensors B
( )
(x) and C

( )
(x) depend on the

mechanical and geometrical parameters of all inclusions ( = 1 ( )) in the cluster
being considered.
For the particular case of the homogeneous ellipsoidal domain with M1(x) =

M
( )
1 const 1(x) =

( )
1 const, we have

R = M
( )
1 (I+Q M

( )
1 )

1 F = (I+M
( )
1 Q ) 1 ( )

1 (2.469)

By comparison of relation (2.466) with (2.468), (2.469) we see that the average thermoe-
lastic response (i.e. the tensors B C R F) of any cluster is the same as that of some
fictitious ellipsoidal homogeneous inclusion with thermoelastic parameters

M
( )
1 = R(I Q R ) 1 ( )

1 =
1
(M

( )
1 Q + I)F (2.470)

The parameters (2.470) of fictitious ellipsoidal inclusions are simply a notational conve-
nience and explicitle depend on the volume of the cluster. No restrictions are imposed
on the microtopology of the cluster as well as on the inhomogeneity of the stress state in
the cluster. They were introduced only as a tribute to tradition (see Introduction) and
can be used just for estimations of the tensors R and F by the use of the attached
Eshelby’ solution (2.469), although the tensors R and F used for introduction of the
fictitious properties (2.470) must be previously evaluated by Eqs. (2.467) and (2.468) from
the thermoelastic solution for a single cluster in the infinite matrix (see Section 6). As it
will be demonstrated, the dependence of e ective properties M and on the internal
structure and mechanical properties of clusters take place only through the tensors R
and F .
Using hypothesisH1, the system (2.459) for fixed clusters with fixed values e1 (x) (x
= 1 ) on the right-hand side of the equations becomes algebraic when the so-

lution (2.466) for one inclusion in the field (x ) ( = 1 ) is applied

R (x ) + F =
X
=1

Z
n
R e1 (x ) + F

o
(2.471)

where the matrix Z 1 has the elements (Z 1)

(Z 1) = I (1 )R T (x x ) ( = 1 ) (2.472)

Averaging (2.461) over the volume of the considered inclusion and using the hy-
pothesis H1 (2.463) lead to

h | 1 x1; ; x i(x) R
X
6=

T (x x )h (y) | 1 x1; ; x i

= 0(x ) +R

Z
T (x x )h |; 1 x1; ; x i T (x x )h i x (2.473)

( = 1 2 ; = 1 ) where 0 = R h i+ F .
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2.5.4 E ective thermoelastic properties of clustered composites

General case of multicomponent clusters

In the framework of the hypothesis H1, substitution of the solution (2.466), and (2.471)
(at = 2) for binary interacting inclusions into the first equation of the system (2.473) at
= 1, and averaging the result obtained over the cluster leads to the linear equation

with respect to h i

h i = R 1
X
=1

{Y R h i+ (Y I )F } (2.474)

from which the e ective properties can be found

M =M(0) +
X
=1

Y R ( ) (2.475)

= (0) +
X
=1

Y F ( ) (2.476)

where the matrix Y 1 with the following elements ( = 1 2 )

(Y 1) =

"
I

X
=1

Z
T (x x ) x

# Z
F (x x ) x (2.477)

!T (x x ) = R T (x x )Z ( x |; x ) (2.478)

F (x x ) = R
£
T (x x )Z ( x |; x ) T (x x ) ( )(x )

¤
(2.479)

determines the action of the surrounding inclusions on the isolated one and is defined
simply by the solution of the problem for purely mechanical loading (with 0). Thus,
the e ective thermoelastic properties M (2.478) and (2.479) as well as the stress
concentrator factor of the e ective field (2.476) are defined by the average thermoelastic
responce inside the infinite matrix of the individual clusters describing by the tensor R
(2.467) and F (2.468) rather than detailed stress distribution inside these clusters.

Particular case of one sort of clusters

A special particular case of one sort of clusters ( = 1) significantly simplifyes the
representations for the e ective properties (2.475) and (2.476), and, moreover, makes
possible to establish a unique relation between the e ective parametersM and which
is similar to the exact classical formula by Levin (1967) (see also Rosen and Hashin, 1970)
for two phases composites and based only on the additional assumption H1). Indead,
the system (2.473) has principally the same structure as the system for the pure elastic
problem (withF 0). Therefore, we can apply the traditional analysis procedure of purely
elastic composites and represent h i(1) as a linear function of the external field 0

h i(1) = Y 0 (2.480)

and therefore
Rh i(1) + F = Y(R 0 + F) (2.481)
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The comparison of (2.473) with (2.480) leads to the fact that Y only depends on the
tensors R T and T . The tensor Y is determined by the purely elastic action (with
F 0) of the surrounding inclusions on the separated one. The actual form of the tensor
Y, used in the analysis as an approximation, depends on additional assumptions for closing
of the infinite system (2.473). In particular, for purely elastic composites (with 1 0)
with fictitious homogeneous inclusions (2.469), (2.470) such relations are represented in
Appendix A for commonly applied methods of micromechanics, i.e. e ective medium
method by Kröner (1958), di erential method, the MTM, and MEFM.
The local stresses inside the cluster are found by

h i (x) = C(x) +B(x)R 1
£
Y(R 0 + F) F

¤
(2.482)

where h i (x) means the statistical average of the local stress state at x 1 over
an ensemble realization of surrounding clusters (but not over the volume of a particular
cluster, in contrast to h i(1)).
Estimation of e ective thermoelastic properties can be found from Eq. (2.482)

M =M(0) +YR (1) (2.483)

= (0) +YF (1) (2.484)

Elimination of the tensor Y from Eqs. (2.483) and (2.484) leads to the unique represen-
tation of thoughM

= (0) + (M M(0))R 1F (2.485)

which is similar to the classical exact relation for two-phase composites

= (0) + (M M(0))(M(1) M(0)) 1( (1) (0)) (2.486)

(see Levin, 1967; Rosen and Hashin (1970)). It is not surprising that the exact relations
(2.486) is derived from the approximate one (2.485) since the additional assumption H1
does not expand the class of the considered materials and homogenization methods. The
representation (2.486) is formally invariant with respect to the replacement (1) (0),
although this can not be said about the relation (2.485), obtained for matrix clustered
structure composites with ellipsoidal inclusions.
Our main objective is it to prove the general relation (2.485) which is valid in the

framework of hypothesisH1 only. No restrictions are imposed on the concrete statistically
homogeneous microstructure of the whole composite material with a single sort of clusters
being analyzed as well as on the microtopology of clusters or on the inhomogeneity of the
stress state in the clusters.

2.5.5 Application to nanocilicate composites

For simplicity, the internal structure of an intercalated clay particle is idealized as a multi-
layer stack containing (1) single silicate plate with uniform inter-layer spacing , as
depicted in Fig.2.36a. Exfoliated clay nanolayers will be be considered as alligned oblate
spheroids with a small aspect ratio ( = ¿ 1, typically on the order of 0.01) described
by the equation

2
1
2
+

2
2
2
+

2
3
2
= 1 (2.487)
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Figure 2.36: Schematic representation of a cluster. a) A stack of oblate spheroids, b)
Definition of the correlation hole 0

in the local coordinate system connected with the spheroid semiexes which in turn are
parallel to the global coordinate system. Intercalated clusters can vary in thickness and
inter-layer spacing depending on the degree of intercalation. Usually the plate thikness
observed was roufly 1nm, the inter-layer spacing ranged from 2 to over 5 nm, and the
number of plates per stack varied from 1 to 50. It is assumed that all stacks are randomly
located, alligned and identical i.e. has the same geometrical structures ( ) and
elastic properties of nanoplates (see Fig.2.36a). The volume concentration of inclusions
(oblate spheroids) in the composite material is = 4

3
2 (1) (1).

The stack containing ellipsoids (2.487) is inscribed in the surface called a cluster
surface described by the equations

=

2
1

2 + 2
2

2 + ( 3 )2 2 = 1 if 3 +
2
1

2 + 2
2

2 = 1 if | 3|
2
1

2 + 2
2

2 + ( 3 + )2 2 = 1 if 3

(2.488)

where = (2 + )( 1) 2 (see Fig.2.36b). We can inscribe into the domain the
spheroid ins of maximum possible volume bounded by the surface

2
1

2 + 2
2

2 + 2
3

2 = 1 (2.489)

with semiaxes and ¯ = + . We will asume that the correlation hole 0 (see Eq. (2.456))
is a spheroid of minimum possible volume

2
1

2 + 2
2

2 + 2
3

2 = 1 (2.490)

with the same aspect ratio as the spheroid Ins: = = ¯. A simple geometrical
analysis leads to the boundaries of the semiaxes of the spheoid 0: 2 + 2

1

2 +¯2 2, 2 + 2
1

2 +¯2 2, where
2 = ¯2 (1 2 cos2 )

( = 1 2) is a polar representation of a cross-section ( Ins { 2 = 0}) with an an

eccentricity =
p
1 min( ¯)2 max( ¯)2, and 1 = arctg( ), 2 = arctg(¯ ).

It should be mention that in the case of exploring of the one particle approximation
of the MEFM being exploring in this paper for obtaining of numerical results in Section
7, the estimations of the e ective properties obtained depend only on the shape of the
correlation hole 0 rather than on its size. In such a case the tensor Y definding the
e ective properties (2.475) and (2.476) and determined by puraly elastic action (with

0) of the surrounding clusters on the separate one, is represented by Eq. (A.8).
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Figure 2.37: Average stress concentrator factor h 11i( ) h 11i the di erent spheroids =
1 ( + 1) 2 in the clusters containing inclusions

2.5.6 Numerical results

This section attempts to quantitatively investigate the performance of the present ap-
proach to the estimation of e ective elastic properties of nanocomposites. The results
are directly compared with solutions obtained from simplified assumptions (such as Mori-
Tanaka approach) and they are presented in order to place the advantages and limitations
of the refined approach in evidence.
Let us consider a nanocomposite made from the Epox 862 reinforced by the oblate

spheroidal nanoplates. The matrix is described by isotropic elastic properties with Young’s
modulus (0) = 3 01 , Poisson’s ratio (0) = 0 41 (see Tandon et al., 2002). Experi-
mental research and molecular dynamic simulation indicated that nanoplates can be ef-
fectively considered in the framework of continuum mechanics as the homogeneous oblate
spheroidal isotropic homogeneous inclusions with a small aspect ratio ( 0 01) with
the axis of symmetry coinciding with the axis 3. In the parametric analysis we will
consider a nanocomposite reinforced by the isotropic nanoinclusions with the properties
(1)=300GPa, (1) = 0 4 (see Sheng et al., 2004) arranged into the randomly located

aligned clusters containing inclusions with = 1 (see Fig.2.36a). Numerical analysis
of a finite number of inclusions (see Section 6) is performed in all cases for number of
harmonics = 11 that provide a relevant accuracy of obtained solutions (estimation of
the accuracy is presented in Kushch, 1996, 1998a).
At first, we will analyze the average stress concentrator factors

h 11i( ) h 11i, h 33i( ) h 33i ( = 1 , = 0 01 and = 4 = 1) at the inclusions
of one isolated cluster in the infinite matrix subjected to the homogeneous loading
h i = 1 1 and h i = 3 3 , respectively.

In Figs.2.37 and 2.38 it can be seen that the stress concentrator factor h 11i( ) h 11i
( = 1 ) significantly (almost in three times) decrease from the outer spheroid to
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Figure 2.38: Average stress concentrator factor h 33i( ) h 33i in the di erent spheroids
= 1 ( + 1) 2 in the clusters containing inclusions

the central spheroid of the cluster. Hereafter one depicts the stress concentrator factors
of inclusions ( = ( + 1) 2 ) numered by the subscript = 1 ( + 1) 2
( = ( 1) 2, see Fig. 1a). This decreasing of stress concentrator factor growths
with the extension of an inclusion number in the cluster. So, variation of h 11i( ) h 11i
inside the stack reaches 2.7 times at = 17 while for = 5 the stress concentrator factors
is varying just on 40%. If the number of the spheroids is much enough (more than 13)
then the average stress concentrator factors in three external spheroids di er between the
clusters with 13 and 17 spheroids just on 1% (see Fig.2).
Such a behavior is qualitative confirmed by 2 finite element analysis by Sheng et

al. (2004) of three rectangular inclusions in the infinite matrix. The large stress in the
outer inclusions counteracts to the stress concentrator at the internal inclusions of the
cluster (shielding e ect). Only a small amount of load is transferred to the middle silicate
layer, due to the low shear modulus of the galleries. In so doing, a variation of stress
concentrator factor h 33i( ) h 33i in the di erent inclusions in a cluster is small enough
and slightly increase from outer inclusions to the internal inclusions of the cluster only for
a large number of inclusions in the stack. This e ect is distinctive for both the functionally
graded and clustered materials of random structure composites reinforced by the spherical
inclusions when the local e ective sti ness increase from the cluster boundary to the
cluster center that with necessity yield the increasing of stress concentrator factor in the
cluster center (see for details Buryachenko, 2001).
In Fig.2.39 the influence of the inter-layer spacing = 2 3 5 9 is analyzed at the fixed

values of all remaining ones ( = 9, = 0 01). As can be seen h 11i( ) h 11i increase, as it is
expected, with extension of . However, in the range of the inter-layer spacing of principal
practical interest = 2 ÷ 9 the average stress concentrator factors at the spheroids in
the cluster significantly below of the limiting stress concentrator factor h 11i( ) h 11i =
38 9 for an isolated inclusion in the infinite matrix at . It should be mentioned
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Figure 2.39: Average stress concentrator factor h 11i( ) h 11i in the di erent spheroids
= 1 ( + 1) 2 in the clusters with di erent inter-layer spacing. inclusions.

that analogous stress concentrator factor for the isolated spheroid with = 0 001 is
h 11i( ) h 11i = 85 4 in excess of the value h 11i( ) h 11i = 38 9 ( = 0 01) by a factor 2 2.
Thus, an oblate silicate spheroid with = 0 01 can not be approximated by an infinite
layer ( ¿ 1) in contrst with the the another limiting case when prolate spheroidal
nanofiber with = 100 can be recognized as am infinite cylinder (see Buryachenko and
Roy, 2005).
We now turn our attention to the analysis of e ective elastic moduli of composites

reinforced by randomly located identical aligned ( = 0 01 = 4 = 1) with di erent
number of the oblate spheroids in the clusters = 1 2 5 13 17. As can be seen in Figs.2.40
and 2.41, increasing of the inclusion number in the clusters leads to decreasing of the
e ective Young moduli 3 and 1 in both the transversal symmetry direction 3 and
the longitudinal direction 1. Thus, exfoliation is favored over intercalation as far as
composite modulus enhancement is concern. The reason of such a behavior is explained
by decreasing of the average stress concentrator factors B

(1)
(2.466) ( = 1 ) at the

individual inclusions in a single cluster in the infinite matrix with a rise in the inclusion
number in a cluster (see Figs. 2.37 and 2.38). In so doing, influence of surrounding clusters
on the chosen one in the composite material describing by the e ective field h i (2.474)
does not culminate in elimination of the slackening e ect of the stress concentrator factors
in an individual cluster.
It should be mentioned that the case = 1 corresponds to the Mori-Tanaka approach

(see Mori and Tanaka, 1993; Benveniste, 1987; Wang and Pyrz, 2004a; as well as the
comprehensive rewiev by Buryachenko, 2001). This approach was applied by Hui and Shia
(1998) and by Shia and Hui et al. (1998) to the analyses of unidirectional nanocomposites
with dispersed and parallel flake-like inclusions at the simplified assumption of complete
exfoliation and full dispersion of nanoplates. In so doing a disageement of the prediction
of e ective moduli and experimental data was attributed by Shia and Hui et al. (1998)
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Figure 2.40: E ective elastic modulus 3( ) for the di erent inclusion number =
1 2 5 13 17 in the clusters.

Figure 2.41: E ective elastic modulus 1( ) for the di erent inclusion number =
1 2 5 13 17 in the clusters.
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Figure 2.42: E ective elastic modulus 1( ) for the di erent inter-layer spacing =
2 3 5 9 ( = 9)

to debonding between clay nanolayers and the matrix. However, we can conclude now,
from Figs.2.40 and 2.41, that the reduction of e ective moduli of nanocomposites with
the clusterisation does not uniquely depend with debonding and can be explained by
pure elastic shealding e ect of dimination of stress concentrator factors at the internal
nanoinclusions in the clusters (see Figs. from 2.37 to 2.39). As can be seen in Figs.2.40 and
2.41, the e ective elastic moduli are not sensitive to the inclusion number of spheroids
inside the clusters if 9. Because of this, we will investigate the inter-layer space
= 2 3 5 9 on the e ective Young moduli 1 (see Fig.2.42) and 3 (see Fig.2.43) at

the fixed = 0 01 and = 9. As one would expect, increasing of the inter-layer spacing
slacking the interaction of the spheroids inside the cluster according to Fig.2.39 leads to
a rice of the e ective Young moduli. In so doing, 1 and 3 rice in 2.1 and 1.3 times,
respectively, at = 0 1. Moreover, an accelerated growth of 1 at = 9 and 0 05
fells even more significant than the increasing of 1 for a single spheroid in the clusters
(see Fig.2.41) that is explained by some sort of shealding e ect in the composite material
at = 1.
Thus, we come to a practically important conclusion that the clustering of sti oblate

spheroidal inclusions leads to the weakening of the reinforcement e ect of nanocompos-
ites and, therefore, the completely expholiated nanocomposites o er maximum sti ness
among nanocomposites with clustered aligned structure. This result has a qualitative con-
firmation by numerical simulation by Sheng et al. (2004) who described this e ect in 2
finite element analysis of periodic structure composites with a quasirandom location of a
number of clusters containing the aligned three rectangular inclusions in the large unite
cell. Furthermore, a well known experimental data (see e.g. Kornmann et al., 2002) also
point to the decreasing of e ective elastic properties with the grough of clustering with
the maximum of e ective sti ness of nanocomposites corresponding to the completely
exfoliated structures.
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Figure 2.43: E ective elastic modulus 3( ) for the di erent inter-layer spacing =
2 3 5 9 ( = 9)

Kornmann et al. (2002) explained this behavior at the intuitive level of justification:
as the interlamillar spacing is increased, the e ective particle volume fraction is also
increased. The corresponding reduction of particle sti ness is much weaker e ct that
increased the volume fraction. Now, this intuitive explanation can be replaced by regorous
justification confirmed by Figs.2.37 and 2.41.
However, the mentioned behavior of decreasing of the e ective sti ness with the in-

creasing of the number of nanoplates in the clusters is drastically changing with the
variation of the inclusion shape. So, the one of the most critical technological prob-
lem is a significant growth of the e ective viscosity of suspensions at the clustering of
spherical inclusions. For a fixed filler content, the viscosity of a system with agglom-
erates of spherical inclusions is always higher than that of the “well-dispersed" sam-
ple (see for references e.g. Lipatov, 1995). In Figs.2.44 and 2.45 the functional depen-
dences 1 and 3 are presented for the spherical inclusions in the clusters
( = 1 = 1 = 0 04 = 1 2 5 9 13 17). As can be seen, both the e ective
Young’s 1 and 3 at the fixed increase with the increasing of . However, the depen-
dence 1 varys very slightly with the variation of (just on 0 9% at = 0 2) as
opposite to the dependence 3 varying in 1 9 times at = 0 2).
Now we will analyze in more details the influence of the inclusion shape in the compos-

ite materials reinforced by the clusters with = 9 which are large enough for fenerating
of maximum cluster e ect. In Figs.2.46 and 2.47 an influence of an aspect ratio =
varying from 0 001 til 10 is investigated with the fixed = 0 04 1 = 9. It is
interesting that the behavior of the dependenses 1 for the fixed and 1 at the
fixed are both monotonic. In so doing the dependence 3 for the fixed is monoton-
ically growing as the functions 1 for the fixed while the variation of dependences

3 at the fixed is not monotonic and achieves its minimum for the investigated
values of at = 0 1. Nonmonotonic behavior of functions 3 at the fixed for the
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Figure 2.44: E ective elastic modulus 1 vs for the di erent inclusion number =
1 2 5 13 17 in the clusters.

Figure 2.45: E ective elastic modulus 3 vs volume concentration of inclusions for the
di erent inclusion number = 1 2 5 13 17 in the clusters.
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Figure 2.46: E ective elastic modulus 1 vs for = 0 001 (curve 1);0 003 (2); 0 01 (3);
0 03 (4), 0 1 (5), 0 3 (6), 1 0(7).

Figure 2.47: E ective elastic modulus 3 vs
(1) for = 0 001 (curve 1);0 003 (2); 0 01

(3); 0 03 (4), 0 1 (5), 0 3 (6), 1 0(7).
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Figure 2.48: Normalized CTE ( 11
(0)
0 )

(1)
01 vs

(1) for the di erent inclusion number
= 1 5 9 13 17 in the clusters.

analyzed clustered material correlates well with the analogous dependences 3 at
the fixed for completely expoliated system corresponding to MTM estimations achiving
its minimum for investigated values of at = 0 3.
We are coming now to the estimation of an e ective coe cient of thermal expansion

(CTE) (2.476). The normalized CTE ( 11
(0)
0 )

(1)
01 and ( 33

(0)
0 )

(1)
01 are pre-

sented in Figs.2.48 and 2.49, respectively, as the functions of the volume concentration of
nanoinclusions (1) for an isotropic CTE of both constituents (0) =

(0)
0

(1) =
(1)
0 ,

and
(1)
1 =

(1)
01 . Nonmonotonical behavior of the value ( 33

(0)
0 )

(1)
01

(1) for the
completely exfoliated nanocomposites ( = 1) is explained by the Poisson’s e ect. Indeed,
even for the small concentration of isotropic nanoplates with positive CTE, the residual
strains h 33i at h i 0 are governed by the shrinkage of oblate sti nanoelements in the

1-direction leading to the negative deformation of the matrix in a perpendicular direc-
tion. With the growth of nanoelement concentration, the mentioned e ect is compensated
by the shrinkage of nanoelements in the transversal direction yielding the decrease of the
e ective CTE in this direction. For the clustered nanocomposites ( 1), the weak de-
pendencies of vs (1) are explained by the shielding e ect analogous to the pure elastic
case (see Figs. from 2.36 to 2.38).

Thus, based on the MEFM, a micromechanical model has been developed to predict
the e ective moduli and stress concentrator factors of random structure nanocomposites
reinforced by the aligned silicate nanoplate clusters of deterministic structure. The model
accounts for the existence of both the exfoliated and intercolated nanoplates, and is able
to analyze the e ect of the aspect ratio of nanoelements, interlayer distances, and the
number of nanoelements in the clusters on the e ective thermoelastic properties. The
proposed analytical-numerical method is e cient from a computational standpoint and
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Figure 2.49: Normalized CTE ( 33
(0)
0 )

(1)
01 vs

(1) for the di erent inclusion number
= 1 5 9 13 17 in the clusters.

provides high-accuracy analysis of a wide cluss of random structure composites reinforced
by the clusters of an arbitrary deterministic structure when interaction of clusters is esti-
mated in the frameworks of the di erent most popular methods of micromechanics such as
the MEFM, MTM, self-concistent method, and the di erential method. Numerical results
were obtained for a special sort of clusters modeling intercalated silicate nanoplates as
a stack of identical parallel oblate spheroids. In so doing interaction of oblate spheroidal
nanoelements inside the cluster is evaluated by the accurate numerical method based on
the the multipole expansion technique wich is best suited for forthcoming incorporation
into the numerical version of the MEFM proposed in the present paper and make possi-
ble to abandon from the majority of simplified assumptions exploring at the analysis of
random structure composites reinforced by the clusters of deterministic structure.
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Appendix A: The evaluation of the tensor Y (2.480)

E ective medium method

The additional closing hypothesis of the e ective medium method is described as
follows: Each inclusion in the composite behaves as an isolated one in a homogeneous
medium whose properties coincide with the e ective properties. Formally this means

H2 : Y I M =M(0) +R(M ) (1) (A.1)

where the tensor R(M ) is calculated by the use of the formulae (2.472) withM(0),M( ),
and being replaced byM ,M ( ), and ¯ , respectively.
The so-called di erential scheme of constructing e ective elastic moduli also belongs

to the class of the e ective medium methods (see e.g. Norris et. al., 1985). This scheme
is considered as a process of consecutive additions of infinitesimal values of the inclusion
phase in a uniform medium with a modulus equal to the e ective modulus of the medium
with the previous additions of inclusions to the matrix, which yields the closed-form
equation

H2 : Y I
M
(1)
=

1

(1 (1)) 1
R(M ) (A.2)

Buryachenko and Parton (1992) proposed a di erential version of the MEFM, in which
at each step of the di erential scheme ( 2) a problem of interacting inclusions inside
some e ective medium is solved.

Mori—Tanaka method
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According to the closing hypothesis of the Mori—Tanaka (1973) method each inclusion
in the composite is considered as an isolated one, located inside an infinite matrix and
loaded by the e ective field h i h i(0) Then from the equation (1)Bh i0+ (0)h i0 =
0 we obtain

H2 : Y 1 = I+ (B I) (1) (A.3)

The MEFM
The final representation of the tensorY is significantly simplified at the“quasi—crystalline"

approximation by Lax (1952) expressed as

H2 : Z = I (A.4)

which leads to the one particle approximation of MEFM (see for references Buryachenko,
2001)

Y 1 = I R

Z £
T (x x ) ( x |; x ) T (x x ) (1)

¤
x (A.5)

Under a point approximation of the inclusions (exact for infinitely spaced heterogeneities)
we have

T (x x ) = T (x x ) = (x x ) (A.6)

and from (A.5) one receives

Y 1 = I R

Z
(x x )

£
( x |; x ) (1)

¤
x (A.7)

The representation (A.7) is follow from the results obtained by the use of the variational
method by Ponte Castañeda andWillis (1995) (see also for references Buryachenko, 2001),
who considered in detail the case of multicomponent composites and the e ect of the
spatial distribution of the homogeneous inclusions. Only in particular cases, in which the
shape of the correlation hole 0 is homothetic to the inclusion shape the formulae (A.3)
and (A.6) coincide. Under the simplest conditional probability density (2.456), Eq. (A.7)
is simplified

Y 1 = I RQ0 (1) (A.8)

where Q0 is defined by Eq. (2.464) for the domain 0 defined in Subsection 2.2 and
constructed in Section 5.
In the case of two particle approximation of the MEFM, a representation of the tensor

Y (2.477) is simplified for one sort of clusters

Y 1=I R

Z
T (x x )Z ( x |; x ) x

R

Z £
T (x x )Z ( x |; x ) T (x x ) (1)

¤
x (A.9)
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